版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、卡爾曼濾波器 Kalman Filter (zz 在學(xué)習(xí)卡爾曼濾波器之前,首先看看為什么叫“卡爾曼”。跟其他著名的理論(例如傅立葉變換,泰勒級數(shù)等等)一樣,卡爾曼也是一個(gè)人的名字,而跟他們不同的是,他是個(gè)現(xiàn)代人!卡爾曼全名Rudolf Emil Kalman,匈牙利數(shù)學(xué)家,1930年出生于匈牙利首都布達(dá)佩斯。1953,1954年于麻省理工學(xué)院分別獲得電機(jī)工程學(xué)士及碩士學(xué)位。1957年于哥倫比亞大學(xué)獲得博士學(xué)位。我們現(xiàn)在要學(xué)習(xí)的卡爾曼濾波器,正是源于他的博士論文和1960年發(fā)表的論文A New Approach to Linear Filtering and Prediction Problem
2、s(線性濾波與預(yù)測問題的新方法)。如果對這編論文有興趣,可以到這里的地址下載: 簡單來說,卡爾曼濾波器是一個(gè)“optimal recursive data processing algorithm(最優(yōu)化自回歸數(shù)據(jù)處理算法)”。對于解決很大部分的問題,他是最優(yōu),效率最高甚至是最有用的。他的廣泛應(yīng)用已經(jīng)超過30年,包括機(jī)器人導(dǎo)航,控制,傳感器數(shù)據(jù)融合甚至在軍事方面的雷達(dá)系統(tǒng)以及導(dǎo)彈追蹤等等。近年來更被應(yīng)用于計(jì)算機(jī)圖像處理,例如頭臉識(shí)別,圖像分割,圖像邊緣檢測等等。2卡爾曼濾波器的介紹(Introduction to the Kalman Filter)為了可以更加容易的理解卡爾曼濾波器,這里會(huì)應(yīng)
3、用形象的描述方法來講解,而不是像大多數(shù)參考書那樣羅列一大堆的數(shù)學(xué)公式和數(shù)學(xué)符號。但是,他的5條公式是其核心內(nèi)容。結(jié)合現(xiàn)代的計(jì)算機(jī),其實(shí)卡爾曼的程序相當(dāng)?shù)暮唵?,只要你理解了他的?條公式。在介紹他的5條公式之前,先讓我們來根據(jù)下面的例子一步一步的探索。假設(shè)我們要研究的對象是一個(gè)房間的溫度。根據(jù)你的經(jīng)驗(yàn)判斷,這個(gè)房間的溫度是恒定的,也就是下一分鐘的溫度等于現(xiàn)在這一分鐘的溫度(假設(shè)我們用一分鐘來做時(shí)間單位)。假設(shè)你對你的經(jīng)驗(yàn)不是100%的相信,可能會(huì)有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(White Gaussian Noise),也就是這些偏差跟前后時(shí)間是沒有關(guān)系的而且符合高斯分配(Gau
4、ssian Distribution)。另外,我們在房間里放一個(gè)溫度計(jì),但是這個(gè)溫度計(jì)也不準(zhǔn)確的,測量值會(huì)比實(shí)際值偏差。我們也把這些偏差看成是高斯白噪聲。好了,現(xiàn)在對于某一分鐘我們有兩個(gè)有關(guān)于該房間的溫度值:你根據(jù)經(jīng)驗(yàn)的預(yù)測值(系統(tǒng)的預(yù)測值)和溫度計(jì)的值(測量值)。下面我們要用這兩個(gè)值結(jié)合他們各自的噪聲來估算出房間的實(shí)際溫度值。假如我們要估算k時(shí)刻的是實(shí)際溫度值。首先你要根據(jù)k-1時(shí)刻的溫度值,來預(yù)測k時(shí)刻的溫度。因?yàn)槟阆嘈艤囟仁呛愣ǖ模阅銜?huì)得到k時(shí)刻的溫度預(yù)測值是跟k-1時(shí)刻一樣的,假設(shè)是23度,同時(shí)該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時(shí)刻估算出的最優(yōu)溫度值的偏差是3,
5、你對自己預(yù)測的不確定度是4度,他們平方相加再開方,就是5)。然后,你從溫度計(jì)那里得到了k時(shí)刻的溫度值,假設(shè)是25度,同時(shí)該值的偏差是4度。由于我們用于估算k時(shí)刻的實(shí)際溫度有兩個(gè)溫度值,分別是23度和25度。究竟實(shí)際溫度是多少呢?相信自己還是相信溫度計(jì)呢?究竟相信誰多一點(diǎn),我們可以用他們的covariance來判斷。因?yàn)镵g2=52/(52+42,所以Kg=0.78,我們可以估算出k時(shí)刻的實(shí)際溫度值是:23+0.78*(25-23=24.56度??梢钥闯?,因?yàn)闇囟扔?jì)的covariance比較?。ū容^相信溫度計(jì)),所以估算出的最優(yōu)溫度值偏向溫度計(jì)的值?,F(xiàn)在我們已經(jīng)得到k時(shí)刻的最優(yōu)溫度值了,下一步就
6、是要進(jìn)入k+1時(shí)刻,進(jìn)行新的最優(yōu)估算。到現(xiàn)在為止,好像還沒看到什么自回歸的東西出現(xiàn)。對了,在進(jìn)入k+1時(shí)刻之前,我們還要算出k時(shí)刻那個(gè)最優(yōu)值(24.56度)的偏差。算法如下:(1-Kg*520.5=2.35。這里的5就是上面的k時(shí)刻你預(yù)測的那個(gè)23度溫度值的偏差,得出的2.35就是進(jìn)入k+1時(shí)刻以后k時(shí)刻估算出的最優(yōu)溫度值的偏差(對應(yīng)于上面的3)。就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優(yōu)的溫度值。他運(yùn)行的很快,而且它只保留了上一時(shí)刻的covariance。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時(shí)刻而改變他自己的值,是不是很神奇!下面
7、就要言歸正傳,討論真正工程系統(tǒng)上的卡爾曼。3 卡爾曼濾波器算法(The Kalman Filter Algorithm)在這一部分,我們就來描述源于Dr Kalman 的卡爾曼濾波器。下面的描述,會(huì)涉及一些基本的概念知識(shí),包括概率(Probability),隨即變量(Random Variable),高斯或正態(tài)分配(Gaussian Distribution)還有State-space Model等等。但對于卡爾曼濾波器的詳細(xì)證明,這里不能一一描述。首先,我們先要引入一個(gè)離散控制過程的系統(tǒng)。該系統(tǒng)可用一個(gè)線性隨機(jī)微分方程(Linear Stochastic Difference equatio
8、n)來描述:X(k=A X(k-1+B U(k+W(k 再加上系統(tǒng)的測量值:Z(k=H X(k+V(k 上兩式子中,X(k是k時(shí)刻的系統(tǒng)狀態(tài),U(k是k時(shí)刻對系統(tǒng)的控制量。A和B是系統(tǒng)參數(shù),對于多模型系統(tǒng),他們?yōu)榫仃?。Z(k是k時(shí)刻的測量值,H是測量系統(tǒng)的參數(shù),對于多測量系統(tǒng),H為矩陣。W(k和V(k分別表示過程和測量的噪聲。他們被假設(shè)成高斯白噪聲(White Gaussian Noise,他們的covariance 分別是Q,R(這里我們假設(shè)他們不隨系統(tǒng)狀態(tài)變化而變化)。對于滿足上面的條件(線性隨機(jī)微分系統(tǒng),過程和測量都是高斯白噪聲,卡爾曼濾波器是最優(yōu)的信息處理器。下面我們來用他們結(jié)合他們的
9、covariances 來估算系統(tǒng)的最優(yōu)化輸出(類似上一節(jié)那個(gè)溫度的例子)。首先我們要利用系統(tǒng)的過程模型,來預(yù)測下一狀態(tài)的系統(tǒng)。假設(shè)現(xiàn)在的系統(tǒng)狀態(tài)是k,根據(jù)系統(tǒng)的模型,可以基于系統(tǒng)的上一狀態(tài)而預(yù)測出現(xiàn)在狀態(tài):X(k|k-1=A X(k-1|k-1+B U(k . (1式(1中,X(k|k-1是利用上一狀態(tài)預(yù)測的結(jié)果,X(k-1|k-1是上一狀態(tài)最優(yōu)的結(jié)果,U(k為現(xiàn)在狀態(tài)的控制量,如果沒有控制量,它可以為0。到現(xiàn)在為止,我們的系統(tǒng)結(jié)果已經(jīng)更新了,可是,對應(yīng)于X(k|k-1的covariance還沒更新。我們用P表示covariance:P(k|k-1=A P(k-1|k-1 A+Q (2式(2
10、中,P(k|k-1是X(k|k-1對應(yīng)的covariance,P(k-1|k-1是X(k-1|k-1對應(yīng)的covariance,A表示A的轉(zhuǎn)置矩陣,Q是系統(tǒng)過程的covariance。式子1,2就是卡爾曼濾波器5個(gè)公式當(dāng)中的前兩個(gè),也就是對系統(tǒng)的預(yù)測。現(xiàn)在我們有了現(xiàn)在狀態(tài)的預(yù)測結(jié)果,然后我們再收集現(xiàn)在狀態(tài)的測量值。結(jié)合預(yù)測值和測量值,我們可以得到現(xiàn)在狀態(tài)(k的最優(yōu)化估算值X(k|k:X(k|k= X(k|k-1+Kg(k (Z(k-H X(k|k-1 (3其中Kg為卡爾曼增益(Kalman Gain:Kg(k= P(k|k-1 H / (H P(k|k-1 H + R (4到現(xiàn)在為止,我們已經(jīng)
11、得到了k狀態(tài)下最優(yōu)的估算值X(k|k。但是為了要另卡爾曼濾波器不斷的運(yùn)行下去直到系統(tǒng)過程結(jié)束,我們還要更新k狀態(tài)下X(k|k的covariance:P(k|k=(I-Kg(k H)P(k|k-1 (5其中I 為1的矩陣,對于單模型單測量,I=1。當(dāng)系統(tǒng)進(jìn)入k+1狀態(tài)時(shí),P(k|k就是式子(2的P(k-1|k-1。這樣,算法就可以自回歸的運(yùn)算下去。卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個(gè)基本公式。根據(jù)這5個(gè)公式,可以很容易的實(shí)現(xiàn)計(jì)算機(jī)的程序。下面,我會(huì)用程序舉一個(gè)實(shí)際運(yùn)行的例子。4 簡單例子(A Simple Example)這里我們結(jié)合第二第三節(jié),舉一個(gè)非常簡單的例子
12、來說明卡爾曼濾波器的工作過程。所舉的例子是進(jìn)一步描述第二節(jié)的例子,而且還會(huì)配以程序模擬結(jié)果。根據(jù)第二節(jié)的描述,把房間看成一個(gè)系統(tǒng),然后對這個(gè)系統(tǒng)建模。當(dāng)然,我們見的模型不需要非常地精確。我們所知道的這個(gè)房間的溫度是跟前一時(shí)刻的溫度相同的,所以A=1。沒有控制量,所以U(k=0。因此得出:X(k|k-1=X(k-1|k-1 . (6式子(2)可以改成:P(k|k-1=P(k-1|k-1 +Q (7因?yàn)闇y量的值是溫度計(jì)的,跟溫度直接對應(yīng),所以H=1。式子3,4,5可以改成以下:X(k|k= X(k|k-1+Kg(k (Z(k-X(k|k-1 (8Kg(k= P(k|k-1 / (P(k|k-1 +
13、 R (9P(k|k=(1-Kg(k)P(k|k-1 (10現(xiàn)在我們模擬一組測量值作為輸入。假設(shè)房間的真實(shí)溫度為25度,我模擬了200個(gè)測量值,這些測量值的平均值為25度,但是加入了標(biāo)準(zhǔn)偏差為幾度的高斯白噪聲(在圖中為藍(lán)線)。為了令卡爾曼濾波器開始工作,我們需要告訴卡爾曼兩個(gè)零時(shí)刻的初始值,是X(0|0和P(0|0。他們的值不用太在意,隨便給一個(gè)就可以了,因?yàn)殡S著卡爾曼的工作,X會(huì)逐漸的收斂。但是對于P,一般不要取0,因?yàn)檫@樣可能會(huì)令卡爾曼完全相信你給定的X(0|0是系統(tǒng)最優(yōu)的,從而使算法不能收斂。我選了X(0|0=1度,P(0|0=10。該系統(tǒng)的真實(shí)溫度為25度,圖中用黑線表示。圖中紅線是卡爾曼濾波器輸出的最優(yōu)化結(jié)果(該結(jié)果在算法中設(shè)置了Q=1e-6,R=1e-1)。附matlab下面的kalman濾波程序:clearN=200;w(1=0;w=randn(1,Nx(1=0;a=1;for k=2:N;x(k=a*x(k-1+w(k-1;endV=randn(1,N;q1=std(V;Rvv=q1.2;q2=std(x;Rxx=q2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版法律服務(wù)企業(yè)法務(wù)專員職位勞動(dòng)合同3篇
- 二零二五版房屋買賣合同范本下載涉及裝修及家具家電條款3篇
- 二零二五年時(shí)尚服飾品牌區(qū)域獨(dú)家代理銷售合同2篇
- 二零二五年度航空貨運(yùn)大客戶承運(yùn)合同范本3篇
- 二零二五年建筑材料出口銷售與綠色認(rèn)證合同3篇
- 二零二五版grc構(gòu)件生產(chǎn)、安裝與裝配式建筑推廣實(shí)施合同3篇
- 二零二五版技術(shù)開發(fā)與成果轉(zhuǎn)化合同3篇
- 二零二五年建筑材料運(yùn)輸及安裝服務(wù)合同6篇
- 二零二五年度家具安裝與室內(nèi)空氣凈化合同2篇
- 二零二五版展覽館場地租賃合同范本(含展覽策劃服務(wù))3篇
- 公路工程施工現(xiàn)場安全檢查手冊
- 公司組織架構(gòu)圖(可編輯模版)
- 1汽輪機(jī)跳閘事故演練
- 陜西省銅川市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
- 禮品(禮金)上交登記臺(tái)賬
- 北師大版七年級數(shù)學(xué)上冊教案(全冊完整版)教學(xué)設(shè)計(jì)含教學(xué)反思
- 2023高中物理步步高大一輪 第五章 第1講 萬有引力定律及應(yīng)用
- 青少年軟件編程(Scratch)練習(xí)題及答案
- 浙江省公務(wù)員考試面試真題答案及解析精選
- 系統(tǒng)性紅斑狼瘡-第九版內(nèi)科學(xué)
- 全統(tǒng)定額工程量計(jì)算規(guī)則1994
評論
0/150
提交評論