莫爾—庫倫理論_第1頁
莫爾—庫倫理論_第2頁
莫爾—庫倫理論_第3頁
莫爾—庫倫理論_第4頁
莫爾—庫倫理論_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上莫爾庫倫理論長期以來,人們根據(jù)對材料破壞現(xiàn)象的分析,提出了各種不同的強度理論。其中適用于土的強度理論有多種,不同的理論各有其優(yōu)缺點。在土力學中被廣泛采用的強度理論要推莫爾庫倫強度理論。1773年,法國學者庫倫(Coulomb)根據(jù)砂土的試驗結(jié)果,提出土的抗剪強度f在應(yīng)力變化不大的范圍內(nèi),可表示為剪切滑動面上法向應(yīng)力的線性函數(shù)。即f=tan后來庫倫又根據(jù)粘性土的試驗結(jié)果,提出更為普遍的抗剪強度公式:f=c+tan1936年,太沙基(Terzaghi)提出了有效應(yīng)力原理。根據(jù)有效應(yīng)力原理,土中總應(yīng)力等于有效應(yīng)力與孔隙水壓力之和,只有有效應(yīng)力的變化才會引起強度的變化。因此,

2、土的抗剪強度f可表示為剪切破壞面上法向有效應(yīng)的函數(shù)。上述庫侖公式應(yīng)改寫為f=c+tan1910年莫爾(Mohr)提出材料產(chǎn)生剪切破壞時,破壞面上的f是該面上法向應(yīng)力的函數(shù),即f=f該函數(shù)在直角坐標系中是一條曲線,如圖1所示,通常稱為莫爾包線。土的莫爾包線多數(shù)情況下可近似地用直線表示,其表達式就是庫倫所表示的直線方程。由庫倫公式表示莫爾包線的土體抗剪強度理論稱為莫爾庫倫(MohrCoulomb)強度理論。圖1 莫爾包線1. 土中某點的應(yīng)力狀態(tài) 我們先來研究土體中某點的應(yīng)力狀態(tài),以便求得實用的土體極限平衡條件的表達式。為簡單起見,下面僅研究平面問題。在地基土中任意點取出一微分單元體,設(shè)作用在該微分

3、體上的最大和最小主應(yīng)力分別為1和3。而且,微分體內(nèi)與最大主應(yīng)力1作用平面成任意角度的平面mn上有正應(yīng)力和剪應(yīng)力圖2(a)。(a) (b)圖2 土中任意一點的應(yīng)力(a)微分體上的應(yīng)力;(b)隔離體上的應(yīng)力為了建立、與1和3之間的關(guān)系,取微分三角形斜面體abc為隔離體圖2(b)。將各個應(yīng)力分別在水平方向和垂直方向上投影根據(jù)靜力平衡條件得聯(lián)立求解以上方程(a)、(b),即得平面mn上的應(yīng)力由以上兩式可知,在1和3已知的情況下,斜截面mn上的法向應(yīng)力和剪應(yīng)力僅與斜截面傾角有關(guān)。由式(1)得-1+322+2=1-322上式表示圓心為(1+32,0)、半徑為1-32關(guān)的莫爾圓。莫爾圓上任一點代表與大主應(yīng)力

4、1作用面成角的斜面,其縱坐標代表該面上的法向應(yīng)力,橫坐標代表該面上的剪應(yīng)力。在直角坐標系中(圖3)以為橫坐標軸以為縱坐標軸,按圖3 用莫爾應(yīng)力圓求正應(yīng)力和剪應(yīng)力一定的比例尺,在軸上截取OB3,OC1,以O(shè)1為圓心,以(1-3)2為半徑,繪制出一個應(yīng)力圓。并從O1C開始逆時針旋轉(zhuǎn)2角,在圓周上得到點A??梢宰C明,A點的橫坐標就是斜面mn上的正應(yīng)力,而其縱坐標就是剪應(yīng)力。事實上,可以看出,A點的橫坐標為OB+BO1+O1Acos2=3+121-3+121-3cos2 =121+3+121-3cos2=而A點的縱坐標為O1Asin2=121-3sin2=2. 土的極限平衡條件莫爾庫倫破壞準則 為了建

5、立實用的土體極限平衡條件,將土體中某點的莫爾應(yīng)力圓和土體的抗剪強度與法向應(yīng)力關(guān)系曲線(簡稱抗剪強度線)畫在同一個直角坐標系中,這樣,就可以判斷土體在這一點上是否達到極限平衡狀態(tài)。由前述可知,莫爾應(yīng)力圓上的每一點的橫坐標和縱坐標分別表示土體中某點在相應(yīng)平面上的正應(yīng)力和剪應(yīng)力,如果莫爾應(yīng)力圓位于抗剪強度包線的下方圖4(a)即通過該點任一方向的剪應(yīng)力都小于土體的抗剪強度f,則該點土不會發(fā)生剪切破壞,而處于彈性平衡狀態(tài)。若莫爾應(yīng)力圓恰好與抗剪強度線相切圖4(b),切點為B,則表明切點B所代表的平面上的剪應(yīng)力與抗剪強度f相等,此時,該點土體處于極限平衡狀態(tài)。(a) (b)圖4 莫爾應(yīng)力圓與土的抗剪強度之

6、間的關(guān)系(a)土處于彈性平衡狀態(tài);(b)土處于極限平衡狀態(tài)根據(jù)莫爾應(yīng)力圓與抗剪強度線相切的幾何關(guān)系,就可以建立起土體的極限平衡條件。下面,我們就以圖5中的幾何關(guān)系為例,說明如何建立無粘性土的極限平衡條件圖5 無粘性土極限平衡條件推導(dǎo)示意圖 1=3tan245+2 (2)土體達到極限平衡條件時,莫爾應(yīng)力圓與抗剪強度線相切于B點,延長CB與軸交于A點,由圖中關(guān)系可知OB=OA再由切割定理,可得13=OB2=OA2在AOC中,有12=OA2tan245+212=13tan245+2因此,1=3tan245+2又由于,tan45+2=1tan45-2=cot45-2所以,有3=1tan245-2 (3

7、)對粘性土和粉土而言,可以類似地推導(dǎo)出其極限平衡條件,為1=3tan245+2+2ctan45+2 (4)這可以從圖6中的幾何關(guān)系求得。作EO平行BC,通過最小主應(yīng)力3的坐標點A作一圓與EO相切于E點,與軸交于I點。圖6 粘性土與粉土極限平衡條件推導(dǎo)示意圖由前可知OI=1=3=tan245+2下面找出IG與c的關(guān)系(G點為最大主應(yīng)力坐標點)。由圖中角度關(guān)系可知EBD為等腰三角形,ED=BD=c,DEB=45-2,則有EB=2csin45+2=IF在GIF中GI=IFcos45+2=2csin45+2cos45+2=2ctan45+2而且 OG=OI+IG所以 1=3tan245+2+2ctan

8、45+2同理可以證明 3=1tan245-2+2ctan45-2 (5)還可以證明sin=1-31+3+2ccot (6)1=31+sin1-sin+2ccos1-sin或3=11-sin1+sin-2ccos1+sin由圖5的幾何關(guān)系可以求得剪切面(破裂面)與大主應(yīng)力面的夾角關(guān)系,因為 2=90+ (7)所以 =45+2 (8)即剪切破裂面與最大主應(yīng)力1作用平面的夾角為=45+2(共軛剪切面)。由此可見,土與一般連續(xù)性材料(如鋼、混凝土等)不同,是一種具有內(nèi)摩擦強度的材料。其剪切破裂面不產(chǎn)生于最大剪應(yīng)力面,而是與最大剪應(yīng)力面成/2的夾角。如果土質(zhì)均勻,且試驗中能保證試件內(nèi)部的應(yīng)力、應(yīng)變均勻分布,則試件內(nèi)將會出現(xiàn)兩組完全對稱的破裂面(圖7)。圖7 土的破裂面確定式(2)至式(8)都是表示土單元體達到極限平衡時(破壞時)主應(yīng)力的關(guān)系,這就是莫爾庫倫理論的破壞準則,也是土體達到極限平衡狀態(tài)的條件,故而,我們也稱之為極限平衡條件。理論分析和試驗研究表明,在各種破壞理論中,對土最適合的是莫爾庫倫強度理論??偨Y(jié)莫爾庫倫強度理論,可以表述為以下三個要點:(1)剪切破裂面上,材料的抗剪強度是法向應(yīng)力的函數(shù),可表達為f=f(2)當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論