




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第三章 回歸分析原理 3·1、一元線(xiàn)性回歸數(shù)學(xué)模型按理說(shuō),在研究某一經(jīng)濟(jì)現(xiàn)象時(shí),應(yīng)該盡量考慮到與其有關(guān)各種有影響的因素或變量。但作為理論的科學(xué)研究來(lái)說(shuō),創(chuàng)造性地簡(jiǎn)化是其的基本要求,從西方經(jīng)濟(jì)學(xué)的基本理論中,我們可以看到在一般的理論分析中,至多只包含二、三個(gè) 變量的數(shù)量關(guān)系的分析或模型。這里所討論的一元線(xiàn)性回歸數(shù)學(xué)模型,是數(shù)學(xué)模型的最簡(jiǎn)單形式。當(dāng)然要注意的是,這里模型討論是在真正回歸意義上來(lái)進(jìn)行的,也可稱(chēng)之為概率意義上的線(xiàn)性模型。在非確定性意義上,或概率意義上討論問(wèn)題,首先要注意一個(gè)最基本的概念或思路問(wèn)題,這就是總體和樣本的概念。我們的信念是任何事物在總體上總是存在客觀規(guī)律的,雖然我們
2、無(wú)論如何也不可能觀察或得到總體,嚴(yán)格說(shuō)來(lái),總體是無(wú)限的。而另一方面,我們只可能觀察或得到的是樣本,顯然樣本肯定是總體的一部分,但又是有限的。實(shí)際上概率論和數(shù)理統(tǒng)計(jì)的基本思想和目的,就是希望通過(guò)樣本所反映出來(lái)的信息來(lái)揭示總體的規(guī)律性,這種想法或思路顯然存在重大的問(wèn)題。但另一方面,我們也必須承認(rèn),為了尋找總體的規(guī)律或客觀規(guī)律,只能通過(guò)樣本來(lái)進(jìn)行,因?yàn)槲覀冎豢赡艿玫綐颖?。在前面我們已?jīng)知道,用回歸的方法和思路處理非確定性問(wèn)題或散點(diǎn)圖,實(shí)際上存在一些問(wèn)題,亦即只有在某些情況下,回歸的方法才是有效的。因此,在建立真正回歸意義上建立其有效方法時(shí),必須作出相應(yīng)的假設(shè)條件。l 基本假設(shè)條件:(1)假設(shè)概率函數(shù)
3、或隨機(jī)變量的分布對(duì)于所有值,具有相同的方差 ,且 是一個(gè)常數(shù),亦即=。(2)假設(shè)的期望值位于同一條直線(xiàn)上,即其回歸直線(xiàn)為 = 等價(jià)于 這個(gè)假設(shè)是最核心的假設(shè),它實(shí)際上表明與之間是確定性的關(guān)系。(3)假設(shè)隨機(jī)變量是完全獨(dú)立的,亦即3·2、隨機(jī)項(xiàng)或誤差項(xiàng)的含義 一元線(xiàn)性回歸模型的一般形式為 是一隨機(jī)項(xiàng)或誤差項(xiàng),它的存在表明對(duì)的影響是隨機(jī)的,非確定性的。所以,對(duì)于每一個(gè)值來(lái)說(shuō),是一個(gè)概率分布,而不是一個(gè)值或幾個(gè)值。正是由于的出現(xiàn),使我們的方法或思路發(fā)生巨大的變化,這是我們必須充分注意的。l 那么,究竟包含了什么意義或內(nèi)容呢?概括地說(shuō)來(lái)主要有:(1) 模型中被忽視了的影響因素;(2) 變量的
4、測(cè)量誤差,這種誤差主要來(lái)自統(tǒng)計(jì)數(shù)據(jù)本身的誤差;(3) 隨機(jī)誤差。社會(huì)經(jīng)濟(jì)現(xiàn)象中涉及到人的主觀因素和行為,還有歷史的、文化的等因素,這些因素一般來(lái)說(shuō)是難以量化的、多變的;(4) 模型的數(shù)量關(guān)系誤差。即數(shù)學(xué)形式所帶來(lái)的誤差。一般來(lái)說(shuō),模型中的常數(shù)項(xiàng)也可以包含某些較為固定的誤差。但是值得指出的是,如果能夠包含上述所有的內(nèi)容,那它的分布及其性質(zhì)將是十分復(fù)雜的,任意的。前面的假設(shè)條件的核心正是限制了的分布形式,因此,實(shí)際上并不能包含如此多的內(nèi)容或負(fù)擔(dān)。另外,上面4個(gè)方面中,我們最主要的是要第4個(gè)問(wèn)題,這也正是經(jīng)濟(jì)學(xué)研究所要真正解決的問(wèn)題。一般來(lái)說(shuō),所有的經(jīng)濟(jì)數(shù)學(xué)模型的誤差也就是這4個(gè)方面,或者說(shuō)是存在的
5、主要問(wèn)題,對(duì)此我們必須要有清醒和深入的認(rèn)識(shí)。 3·3、一元線(xiàn)性回歸模型的參數(shù)估計(jì)我們已知道,總體意義上真正的回歸模型是未知的,我們的任務(wù)是如何通過(guò)樣本觀察值給出總體真正回歸模型的最好估計(jì)。我們必須理解和認(rèn)識(shí)總體回歸模型和樣本回歸模型的區(qū)別和關(guān)系,必須反反復(fù)復(fù)地去認(rèn)識(shí)、體會(huì)。假設(shè)總體真正的回歸直線(xiàn)是 它是由總體回歸模型 顯然,上面的模型是想象的、理論上的,實(shí)際上是找不到的,它們實(shí)際上就是所謂客觀規(guī)律。而樣本的回歸直線(xiàn)為 它是來(lái)自于樣本的回歸模型 注意總體和樣本模型的區(qū)別和聯(lián)系,無(wú)限和有限,相同和不同等。下面我們同樣根據(jù)最小二乘準(zhǔn)則,建立真正回歸意義上的最小二乘法:對(duì)樣本模型 假設(shè)其估計(jì)
6、的回歸模型為 因此,其殘差則為 所以,其殘差平方和為 根據(jù)前面的結(jié)果,我們有 其中 到此樣本回歸模型的參數(shù)就估計(jì)出來(lái)了。對(duì)于這個(gè)結(jié)果需要注意的是,這里的 , 都是的函數(shù),而是隨機(jī)變量,因此,從理論上說(shuō),隨機(jī)變量,而不是一個(gè)或幾個(gè)固定的值,是一個(gè)概率分布。正因?yàn)槿绱?,回歸的結(jié)果實(shí)際上也不是確定的,而是概率意義上的。接著我們關(guān)心的是,這個(gè)估計(jì)結(jié)果怎么樣?是否可用樣本回歸模型來(lái)推斷或替代總體回歸模型呢?因此,我們必須進(jìn)一步討論,的性質(zhì),亦即討論樣本回歸模型的性質(zhì)。 34、估計(jì)值的性質(zhì)(1) 估計(jì)值的線(xiàn)性性質(zhì)。所謂線(xiàn)性性是指估計(jì)值,是觀測(cè)值的線(xiàn)性函數(shù)。證明: 而 其中同理可證:= 其中 所以,是線(xiàn)性函
7、數(shù)(應(yīng)注意線(xiàn)性性的意義和作用)。(2) 估計(jì)值的無(wú)偏性。所謂無(wú)偏性是指估計(jì)值,的期望值等于總體回歸模型參數(shù),的值。亦即 ,。證明:通過(guò)計(jì)算可知 , 其中所以有 同理可證 (3)有效性(或稱(chēng),具有最小方差性)。所謂有效性主要是指最小二乘估計(jì),在所有線(xiàn)性無(wú)偏估計(jì)中,其方差是最小的。證明的基本思路是: ,證明(略)。上面三個(gè)性質(zhì)是最小二乘估計(jì)的主要性質(zhì),理論上說(shuō)已達(dá)到最好的結(jié)果了。因此,滿(mǎn)足這三條的估計(jì)也稱(chēng)作最優(yōu)線(xiàn)性無(wú)偏估計(jì)。值得注意的是,這里的最優(yōu)只是相對(duì)所有線(xiàn)性估計(jì)中而言的,而不包括非線(xiàn)性估計(jì)。也可以說(shuō)在很多的情況下,肯定存在比最小二乘估計(jì)更好的估計(jì)值,這一點(diǎn)必須要認(rèn)識(shí)清楚。還有一點(diǎn),最小二乘估
8、計(jì)的性質(zhì)實(shí)際上與其假設(shè)條件是密切相關(guān)的,沒(méi)有這樣假設(shè)就沒(méi)有這樣的性質(zhì),因此,我們還要看看其假設(shè)條件到底是什么意思,要進(jìn)一步去認(rèn)識(shí)假設(shè)條件。 3·5、最小二乘估計(jì),的顯著性檢驗(yàn)與置信區(qū)間所謂顯著性檢驗(yàn)實(shí)際上就是對(duì)檢驗(yàn)估計(jì)值與總體參數(shù)值差別大小的方法。也就是數(shù)理統(tǒng)計(jì)中的“假設(shè)檢驗(yàn)”的方法一種實(shí)際應(yīng)用。這里再一次指出,參數(shù)估計(jì)之所以要進(jìn)行檢驗(yàn),是因?yàn)檫@里的,是隨機(jī)變量。根據(jù)“假設(shè)檢驗(yàn)”的要求,我們要想辦法求出,的概率分布函數(shù),又由于它們是的線(xiàn)性函數(shù),則首先要知道的分布。因此,我們只能假設(shè)服從正態(tài)分布(根據(jù)大數(shù)定理和中心極限定理,在大樣本情況下并不失一般性)。假設(shè)服從正態(tài)分布,又因,是的線(xiàn)性
9、函數(shù),所以,也是服從正態(tài)分布的。只要計(jì)算出,的方差,我們就可得到 在上面的分布函數(shù)中,除了, 不可能知道外,我們必須解決未知數(shù)估計(jì)值,才可能繼續(xù)進(jìn)行顯著性檢驗(yàn)。1、 建立隨機(jī)變量方差的估計(jì)值采用一定的辦法是可以解決估計(jì)值的,下面給出其推理過(guò)程,并證明其估計(jì)值是一個(gè)無(wú)偏估計(jì)。設(shè): 所以 而 (1) 又(2) 代入 則有 由此我們就有 因此,進(jìn)一步則有 下面我們分別計(jì)算上式右邊每一項(xiàng)的期望值: 其中 ( 注意其中 )因此,我們最終得到 如果我們定義 ,那么就是的無(wú)偏估計(jì),亦即有 。 但是我們還不能證明 是最小方差估計(jì),這是十分遺憾的。 2、 最小二乘估計(jì)值,的顯著性檢驗(yàn)現(xiàn)在我們可以開(kāi)始對(duì),檢驗(yàn)了。
10、我們應(yīng)該認(rèn)識(shí)到,通過(guò)樣本得到具體估計(jì)值, 只是一個(gè)值,或者說(shuō)只是無(wú)窮個(gè)可能值中的一個(gè),此時(shí)我們并不了解它們的精度和可靠性。因此,顯著性檢驗(yàn)實(shí)際上是檢驗(yàn),與,之間的差距和可靠性。具體的檢驗(yàn)方法就是“假設(shè)檢驗(yàn)”的方法。我們從數(shù)理統(tǒng)計(jì)中知道,一般假設(shè)檢驗(yàn)中用來(lái)進(jìn)行檢驗(yàn)的統(tǒng)計(jì)量(實(shí)際上就是一種隨機(jī)變量)主要有二個(gè),即Z統(tǒng)計(jì)量和T統(tǒng)計(jì)量。(1)應(yīng)用Z統(tǒng)計(jì)量的條件是:已知而無(wú)論樣本的大小,或者未知但樣本足夠的大(n至少大于30)。 已知 則我們有N(0 ,1) N(0 ,1)當(dāng)然如果未知,但樣本數(shù)大于30,則在上式中用替代即可。(2)應(yīng)用T統(tǒng)計(jì)量的條件:當(dāng)方差未知,且樣本小于30時(shí)。已知 則我們有 = t
11、(n-k) =t(n-k)這里的n是樣本的個(gè)數(shù),k是模型中變量的個(gè)數(shù),n-k是自由度。到此假設(shè)檢驗(yàn)的基本工作基本上做好了,需要指出的是,統(tǒng)計(jì)量的設(shè)計(jì)一方面是把特殊的分布函數(shù)轉(zhuǎn)化成標(biāo)準(zhǔn)的分布形式,另一方面把需要檢驗(yàn)的對(duì)象同時(shí)也明確起來(lái)了。上面統(tǒng)計(jì)量分子正好反映了我們檢驗(yàn)的意義。在“假設(shè)檢驗(yàn)”的實(shí)際應(yīng)用中,一個(gè)十分重要的問(wèn)題是如何確定總體意義上的,的值。我們知道“總體”概念說(shuō)到底只是一個(gè)設(shè)想,一個(gè)信念而已,我們不可能知道,的具體值,但我們又要依據(jù),具體值才能判斷或檢驗(yàn),是否是可接受的或誤差不大。這個(gè)問(wèn)題或矛盾怎么解決呢?這實(shí)際上是一個(gè)深刻的方法論問(wèn)題。簡(jiǎn)單地說(shuō),我們只能用假設(shè)、或者具體地說(shuō)是用理論
12、假說(shuō)的數(shù)量結(jié)論來(lái)替代,的具體值,也就是“假設(shè)檢驗(yàn)”方法中作出“零假設(shè)”的主要依據(jù);當(dāng)然在把回歸模型作為預(yù)測(cè)用途時(shí),也可以把其他主觀或經(jīng)驗(yàn)的判斷作為“零假設(shè)”的依據(jù)。這樣我們就可看到,所謂“假設(shè)檢驗(yàn)”中原來(lái)希望檢驗(yàn),與 ,之間差異的想法或思路,已經(jīng)轉(zhuǎn)變?yōu)闄z驗(yàn),是否與理論假說(shuō)或其他主觀判斷和經(jīng)驗(yàn)相符。這一轉(zhuǎn)變是深刻的和巨大的,這里,已變成了檢驗(yàn)的標(biāo)準(zhǔn),由被動(dòng)變?yōu)橹鲃?dòng),而理論假說(shuō)或其他主觀判斷則變成了被檢驗(yàn)對(duì)象。這一轉(zhuǎn)變所說(shuō)明是問(wèn)題是很多的、深刻的,應(yīng)該好好認(rèn)識(shí)和體會(huì)?!凹僭O(shè)檢驗(yàn)”的具體過(guò)程(例子):略3、總體參數(shù),置信區(qū)間的估計(jì)通過(guò)“假設(shè)檢驗(yàn)”方法或顯著性檢驗(yàn),雖然證實(shí)了估計(jì)值,的顯著性,但還沒(méi)有
13、說(shuō)明它們就完全正確估計(jì)了真實(shí)總體參數(shù),至多只能說(shuō)明,是它們的一種可能的值,其它更多的可能性顯然是存在的,或許其它的值更好或更合適,因?yàn)?,只是?lái)自一組樣本的估計(jì)結(jié)果。因此,為了確定,是怎樣接近真實(shí)總體的參數(shù),我們期望構(gòu)造一個(gè)區(qū)間來(lái)具體加以說(shuō)明,亦即建立一個(gè)圍繞估計(jì)值,的一定限制范圍,來(lái)推斷總體參數(shù),在一定置信度下落在此區(qū)間。所謂置信(或稱(chēng)置信水平)度實(shí)際上與顯著性的意義類(lèi)似,只是數(shù)量的大小相反而已。例如,對(duì)于的T統(tǒng)計(jì)量,有 =t(n-k)先確定其置信度如95%和自由度(n-k),然后通過(guò)t分布表找出臨界值的值。則我們有 即 所以,置信度是95%的置信區(qū)間為 我們可以看出,置信區(qū)間的長(zhǎng)度與置信度的
14、大小是密切相關(guān)的,其長(zhǎng)度與置信度的大小是成正比的。這種關(guān)系也是值得思考的。3·6、預(yù)測(cè)值問(wèn)題的分析 所謂預(yù)測(cè)問(wèn)題就是對(duì)于已估計(jì)的計(jì)量經(jīng)濟(jì)學(xué)模型來(lái)說(shuō),相對(duì)于一給定的X值,例如,其預(yù)測(cè)值的性質(zhì)和效果如何?再來(lái)回顧一下我們建立回歸模型的過(guò)程及其性質(zhì)。根據(jù)最小二乘法我們從樣本模型 找到了它的回歸直線(xiàn)我們已對(duì) ,作了檢驗(yàn)并通過(guò)后,應(yīng)該可以根據(jù)上式來(lái)進(jìn)行預(yù)測(cè)了,亦即對(duì)于,可得到,亦即我們要具體考察性質(zhì),實(shí)際上主要是分析它的誤差性質(zhì),我們可以通過(guò)不同角度的分析來(lái)進(jìn)行。我們可以從兩種角度來(lái)看待的誤差。一是把看成是總體回歸線(xiàn)(即)的估計(jì)值;二是把看成是(即)的估計(jì)值。下面來(lái)具體分析:(1)如果把看成是
15、總體回歸線(xiàn)即的近似值,則有什么樣的性質(zhì)呢。首先可以證明的是是的無(wú)偏估計(jì)?,F(xiàn)證明如下: 然后,我們來(lái)看看 方差的性質(zhì)和具體形式: (具體計(jì)算過(guò)程參看4344頁(yè))從方差的計(jì)算結(jié)果可看出,如果離樣本觀測(cè)值的距離越大,則的方差也就越大。這實(shí)際上說(shuō)明回歸的基本思想實(shí)際上是歸納的思路,亦即我們的不能脫離樣本或經(jīng)驗(yàn)的范圍太遠(yuǎn),否則模型的預(yù)測(cè)值的方差將增大,預(yù)測(cè)將將變得更加不可靠。這個(gè)結(jié)果也許使我們對(duì)歸納法及思想的局限性或存在的問(wèn)題有了一個(gè)數(shù)學(xué)上的解釋。同時(shí)這個(gè)結(jié)果也把回歸模型預(yù)測(cè)的類(lèi)型分為兩類(lèi),第一類(lèi)稱(chēng)之為“內(nèi)插檢驗(yàn)”亦即這時(shí)的必須在樣本所限定的區(qū)間內(nèi),言外之意是對(duì)經(jīng)驗(yàn)之內(nèi)的情況,回歸模型的預(yù)測(cè)效果是比較可
16、靠的。第二類(lèi)稱(chēng)之為“外推預(yù)測(cè)”,這時(shí)的是在樣本區(qū)間的外面,這時(shí)的預(yù)測(cè)值的誤差方差顯然是較大的,亦即“外推預(yù)測(cè)”是十分不可靠的。(2)如果把看作真正總體或的預(yù)測(cè)估計(jì)值,其性質(zhì)和結(jié)果又會(huì)什么變化呢?這里要注意的是,這時(shí)不僅可能有抽樣誤差的存在,而且還可能由隨機(jī)項(xiàng)而引起隨機(jī)誤差的出現(xiàn),它們將使得不同于。下面我們來(lái)具體看看這種情況下的期望值和方差: 對(duì)于給定的,有 則 取其期望值,則有 這個(gè)結(jié)論是否與上面的情形是一樣的呢?是否能說(shuō)是的無(wú)偏估計(jì)呢?看來(lái)是有問(wèn)題的,其問(wèn)題的關(guān)鍵是是什么?是一個(gè)隨機(jī)變量?還是一個(gè)確定的值?不同的理解就會(huì)有不同的結(jié)論。再來(lái)看看此時(shí)的方差又有什么變化: =從上面的結(jié)果可清楚看出
17、,總體的與樣本的估計(jì)值之間的方差,要比與總體回歸線(xiàn)的方差大,準(zhǔn)確地說(shuō)大。這是一個(gè)十分重要的結(jié)論,可具體表示為 預(yù)測(cè)誤差的方差=抽樣誤差的方差+隨機(jī)誤差項(xiàng)的方差這個(gè)結(jié)論表明,人為降低預(yù)測(cè)誤差只能在抽樣誤差的方差方面作出努力,而其存在的隨機(jī)誤差是無(wú)法避免或改變的。通過(guò)上面的討論和計(jì)算,我們就可以進(jìn)一步對(duì)進(jìn)行顯著性檢驗(yàn)和計(jì)算其置信區(qū)間。下面只介紹T統(tǒng)計(jì)量檢驗(yàn)的情形,對(duì)于構(gòu)造的T統(tǒng)計(jì)量為 t(n-k) 具有n-k個(gè)自由度具體的檢驗(yàn)過(guò)程和置信區(qū)間的推導(dǎo)過(guò)程這里就省略了。值得指出地是,在進(jìn)行用于預(yù)測(cè)值的檢驗(yàn)時(shí),與前面的假設(shè)檢驗(yàn)是有較大區(qū)別的,這里需要關(guān)心的不是理論的假說(shuō)結(jié)果,而是回歸模型預(yù)測(cè)值的具體精度,是精度而不是數(shù)量的性質(zhì),亦即是量而不是質(zhì)的問(wèn)題。第三章 作業(yè)1、 知下列數(shù)據(jù):有關(guān)英國(guó)車(chē)禍次數(shù)與有執(zhí)照汽車(chē)數(shù)的數(shù)據(jù) 年份: 1947 48 49 50 51 52 53 5 4 55 56 57車(chē)禍
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)窺鏡柜市場(chǎng)分析:預(yù)計(jì)2031年全球市場(chǎng)銷(xiāo)售額將達(dá)到2.04億美元
- ESG與央國(guó)企月度報(bào)告:5月ESG央國(guó)企策略超額收益為1.23%
- 初中思想品德教師工作總結(jié)
- 《電力信息系統(tǒng)網(wǎng)絡(luò)安全等級(jí)保護(hù)測(cè)評(píng)報(bào)告評(píng)審指南》(征求意見(jiàn)稿)
- 工業(yè)互聯(lián)網(wǎng)NFV虛擬化網(wǎng)絡(luò)在智能工廠中的實(shí)踐案例分析
- 藝術(shù)培訓(xùn)平臺(tái)用戶(hù)體驗(yàn)優(yōu)化與市場(chǎng)競(jìng)爭(zhēng)力提升報(bào)告
- 四季變換食品飲料行業(yè):飲料市場(chǎng)發(fā)展趨勢(shì)與競(jìng)爭(zhēng)格局分析
- 物聯(lián)網(wǎng)技術(shù)概論 習(xí)題與答案
- 智能垃圾分類(lèi)在2025年商業(yè)綜合體運(yùn)營(yíng)中的應(yīng)用研究報(bào)告
- 交通流量預(yù)測(cè)在智慧交通系統(tǒng)中的多尺度建模與仿真報(bào)告2025
- 醫(yī)院新技術(shù)開(kāi)展總結(jié)及整改措施
- 2022室外排水設(shè)施設(shè)計(jì)與施工-鋼筋混凝土化糞池22S702
- 人才培養(yǎng)方案論證會(huì)流程
- 高校師德師風(fēng)專(zhuān)題培訓(xùn)課件
- 【復(fù)習(xí)資料】10398現(xiàn)代漢語(yǔ)語(yǔ)法修辭研究(練習(xí)測(cè)試題庫(kù)及答案)
- 制造業(yè)中員工的倉(cāng)庫(kù)管理培訓(xùn)
- 砼回彈強(qiáng)度自動(dòng)計(jì)算表
- 無(wú)人機(jī)前景分析報(bào)告
- CDCC嬰幼兒智能發(fā)育量表
- 果汁飲料加工廠可行性研究方案
- 了解中醫(yī)心理學(xué)在臨床中的應(yīng)用
評(píng)論
0/150
提交評(píng)論