奧賽立體幾何中的截面問題學(xué)生_第1頁
奧賽立體幾何中的截面問題學(xué)生_第2頁
奧賽立體幾何中的截面問題學(xué)生_第3頁
奧賽立體幾何中的截面問題學(xué)生_第4頁
奧賽立體幾何中的截面問題學(xué)生_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、立體幾何的截面問題一主要知識:(1)【公理1】如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線上所有的點(diǎn)都在這個平面內(nèi).意義作為判斷和證明是否在平面內(nèi)的依據(jù);證明點(diǎn)在某平面內(nèi)的依據(jù);檢驗(yàn)?zāi)趁媸欠衿矫娴囊罁?jù).(2)【公理2】如果兩個平面有一個公共點(diǎn),那么它們還有其他公共點(diǎn),且所有這些公共點(diǎn)的集合是一條過這個公共點(diǎn)的直線.意義作為判斷和證明兩平面是否相交;證明點(diǎn)在某直線上;證明三點(diǎn)共線;證明三線共點(diǎn).(3)【公理3】經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個平面.推論經(jīng)過一條直線和直線外的一點(diǎn)有且只有一個平面.推論經(jīng)過兩條相交直線有且只有一個平面.推論經(jīng)過兩條平行直線有且只有一個平面.意義公理及其推論

2、是空間里確定平面的依據(jù),也是證明兩個平面重合的依據(jù),還為立體幾何問題轉(zhuǎn)化為平面幾何問題提供了理論依據(jù)和具體辦法.(4)【公理4】平行于同一條直線的兩條直線互相平行(5)【等角定理】一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。推論兩條相交直線分別與另外兩條直線平行,那么這兩組直線所成的銳角(或直角)相2【主要題型】截面形狀的判斷 截面面積和周長的計(jì)算 截面圖形的計(jì)數(shù) 截面圖形的性質(zhì)和最值二預(yù)備練習(xí)1. 如圖,點(diǎn)確定的平面與點(diǎn)確定的平面相交于直線, 且直線與直線相交于點(diǎn),直線與直線相交于點(diǎn),試作出面與面的交線2. 如圖, 分別是四面體的棱上的點(diǎn),若直線與直線的交點(diǎn)為,直線與

3、直線的交點(diǎn)為,與相交于,證明三點(diǎn)共線3. 四面體中,分別為的中點(diǎn),在上, 在上,且有,求證:三線共點(diǎn)4. 平行六面體中, 平面,求證:三例題講解題型1。截面形狀判斷1(05年全國)如圖,分別是正方體的棱上的中點(diǎn),試作出過三點(diǎn)的截面是( )A三角形 B四邊形 C五邊形 D六邊形變題:過棱長為2的正方體棱中點(diǎn)作一個與底面成.角的截面,則截面的圖形為 題型2。截面面積及周長的計(jì)算1. 過正方體的對角線的截面面積為S,Smax和Smin分別為S的最大值和最小值,則的值為 ( )ABC D2. 已知正四棱錐的棱長都等于,側(cè)棱的中點(diǎn)分別為和,若過三點(diǎn)的平面交側(cè)棱于,則四邊形的面積為_3. 如圖,正方體的三

4、條棱為,是體對角線。點(diǎn)分別在上,,那么,平面向各個方向延伸后與正方體的交線組成的多邊形面積是多少?4. 一平面與正方體表面的交線圍成的封閉圖形稱為正方體的“截面圖形”,棱長為1的正方體中,分別是,的中點(diǎn),求過三點(diǎn)的截面圖形的周長。題型3。截面圖形的計(jì)數(shù)1.設(shè)四棱錐 的底面不是平行四邊形, 用平面去截此四棱錐, 使得截面四邊形是平行四邊形, 則這樣的平面( )A. 不存在 B. 只有1個 C. 恰有4個 D. 有無數(shù)多個2.過正四面體的頂點(diǎn)做一個形狀為等腰三角形的截面,且使截面與底面成角,問這樣的截面可作幾個?題型4。截面圖形的性質(zhì)1水平桌面上放置著一個容積為的密閉的長方體玻璃容器,其中裝有的水

5、則下列說法中正確的是 把容器一端慢慢提起,使容器的一條棱保持在桌面上,這個過程中,水的形狀始終是柱體; 在中的運(yùn)動過程中,水面是矩形; 把容器提離桌面,隨意轉(zhuǎn)動,水面始終過長方體的一個定點(diǎn); 在中水與容器的接觸面積始終不變2設(shè)O是正三棱錐P-ABC底面是三角形ABC的中心,過O的動平面與PC交于S,與PA、PB的延長線分別交于Q、R,則和式( )A有最大值而無最小值B有最小值而無最大值C既有最大值又有最小值,兩者不等D是一個與面QPS無關(guān)的常數(shù)3如圖,為正方體。任作平面與對角線垂直,使得與正方體的每個面都有公共點(diǎn),記這樣得到的截面多邊形的面積為S,周長為.則( )AS為定值,不為定值 BS不為

6、定值,為定值CS與均為定值 DS與均不為定值題型5。截面圖形的最值1. 如圖,在正方體中盛滿水,分別為、的中點(diǎn).若三個小孔分別位于三點(diǎn)處,則正方體中的水最多會剩下原體積的( )A、 B、 C、 D、2. 頂點(diǎn)為P的圓錐的軸截面是等腰直角三角形,A是底面圓周上的點(diǎn),B是底面圓內(nèi)的點(diǎn),O為底面圓的圓心,垂足為B,垂足為H,且PA=4,C為PA的中點(diǎn),則當(dāng)三棱錐OHPC的體積最大時,OB的長是 ( )A. B. C. D. 3. 如圖,四面體的各面都是銳角三角形,且,平面分別截棱于點(diǎn),求四邊形的周長最小值4. 在長方體中,。記過的截面的面積為,求的最小值,并指出此時截面的位置。三課外練習(xí):1.正方體

7、的截平面不可能是: (1) 鈍角三角形 (2) 直角三角形 (3) 菱 形 (4) 正五邊形 (5) 正六邊形;下述選項(xiàng)正確的是: ( )A. (1)(2)(5) B. (1)(2)(4) C. (2)(3)(4) D. (3)(4)(5) 2 (08年江西)如圖1,一個正四棱柱形的密閉容器水平放置,其底部P圖1P圖2鑲嵌了同底的正四棱錐形實(shí)心裝飾塊,容器內(nèi)盛有升水時,水面恰好經(jīng)過正四棱錐的頂點(diǎn)如果將容器倒置,水面也恰好過點(diǎn)(圖2) 有下列四個命題:A正四棱錐的高等于正四棱柱高的一半;B將容器側(cè)面水平放置時,水面也恰好過點(diǎn);C任意擺放該容器,當(dāng)水面靜止時,水面都恰好經(jīng)過點(diǎn);D若往容器內(nèi)再注入升水,則容器恰好能裝滿其中真命題的代號是: (寫出所有真命題的代號)3.已知正四面體的棱長為2,求出所有與它的四個頂點(diǎn)距離相等的截面的面積之和。4.過正方體的對角線的截面面積為,記的最大值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論