




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、.12.3 2.3 數(shù)學(xué)歸納法數(shù)學(xué)歸納法.2問(wèn)題提出問(wèn)題提出 1. 1.歸納推理的基本特征是什么?歸納推理的基本特征是什么?由個(gè)別事實(shí)概括出一般結(jié)論由個(gè)別事實(shí)概括出一般結(jié)論. . 2. 2.綜合法,分析法和反證法的基本思綜合法,分析法和反證法的基本思想分別是什么?想分別是什么?綜合法:綜合法:由已知推可知,逐步推出未知由已知推可知,逐步推出未知. . 分析法:分析法:由未知探需知,逐步推向已知由未知探需知,逐步推向已知. . 反證法:反證法:假設(shè)結(jié)論不成立,推出矛盾得假設(shè)結(jié)論不成立,推出矛盾得 證明證明. . .3 3. 3.歸納推理能幫助我們發(fā)現(xiàn)一般結(jié)論,歸納推理能幫助我們發(fā)現(xiàn)一般結(jié)論,但得
2、出的結(jié)論不一定正確,即使正確也但得出的結(jié)論不一定正確,即使正確也需要經(jīng)過(guò)嚴(yán)格的證明才能肯定其真實(shí)性需要經(jīng)過(guò)嚴(yán)格的證明才能肯定其真實(shí)性. . 綜合法,分析法和反證法雖可證明某些綜合法,分析法和反證法雖可證明某些結(jié)論,但都有其局限性,因此,我們非結(jié)論,但都有其局限性,因此,我們非常需要一個(gè)與歸納推理相匹配的證明方常需要一個(gè)與歸納推理相匹配的證明方法,使之成為無(wú)與倫比的法,使之成為無(wú)與倫比的“黃金搭檔黃金搭檔”. .4.5探究(一):探究(一):數(shù)學(xué)歸納法的感性認(rèn)識(shí)數(shù)學(xué)歸納法的感性認(rèn)識(shí) 思考思考1 1:某人想排隊(duì)進(jìn)展覽館參觀,不知某人想排隊(duì)進(jìn)展覽館參觀,不知自己能否進(jìn)得去,于是問(wèn)組織者,答曰;自己能
3、否進(jìn)得去,于是問(wèn)組織者,答曰;只要你前一個(gè)人能進(jìn)去,你就能進(jìn)去只要你前一個(gè)人能進(jìn)去,你就能進(jìn)去. .那那么此人能進(jìn)去參觀嗎?若每個(gè)排隊(duì)的人么此人能進(jìn)去參觀嗎?若每個(gè)排隊(duì)的人都能進(jìn)去參觀,需要什么條件?都能進(jìn)去參觀,需要什么條件?(1 1)第一個(gè)人進(jìn)去;)第一個(gè)人進(jìn)去; (2 2)若前一個(gè)人進(jìn)去,則后一個(gè)人也能)若前一個(gè)人進(jìn)去,則后一個(gè)人也能 進(jìn)去進(jìn)去. . .6思考思考2 2:有若干塊骨牌豎直擺放,若將它有若干塊骨牌豎直擺放,若將它們?nèi)客频梗惺裁崔k法?一般地,多們?nèi)客频梗惺裁崔k法?一般地,多米諾骨牌游戲的原理是什么?米諾骨牌游戲的原理是什么?(1 1)推倒第一塊骨牌;)推倒第一塊骨牌;
4、 (2 2)前一塊骨牌倒下時(shí))前一塊骨牌倒下時(shí)能碰倒后一塊骨牌能碰倒后一塊骨牌. .多米諾骨牌.flv世界上最牛的多米諾骨牌.flv多米諾骨牌 臺(tái)球傻眼 .mp4本田多米諾經(jīng)典廣告.mp4.7思考思考3 3:某人姓王,其子子孫孫都姓王嗎?某人姓王,其子子孫孫都姓王嗎?某家族所有男人世代都姓王的條件是什某家族所有男人世代都姓王的條件是什么?么? (1 1)始祖姓王;)始祖姓王; (2 2)子隨父姓)子隨父姓. . (第(第1 1代姓王)代姓王)(如果第(如果第k k代姓代姓T T,則第,則第k+1k+1代也姓代也姓T T).8思考思考4 4:已知數(shù)列已知數(shù)列aan n 滿(mǎn)足滿(mǎn)足: : (nnN*
5、),那么該數(shù)列),那么該數(shù)列的各項(xiàng)能確定嗎?上述遞推關(guān)系只說(shuō)明的各項(xiàng)能確定嗎?上述遞推關(guān)系只說(shuō)明什么問(wèn)題?若確定數(shù)列中的每一項(xiàng),還什么問(wèn)題?若確定數(shù)列中的每一項(xiàng),還需增加什么條件?需增加什么條件? 11nnnaaa+=+由第由第k k項(xiàng)可推出第項(xiàng)可推出第k k1 1項(xiàng)項(xiàng). . 給出第給出第1 1項(xiàng);項(xiàng);(1 1)(2 2).9探究(二):探究(二):數(shù)學(xué)歸納法的基本原理數(shù)學(xué)歸納法的基本原理 111kak+=+思考思考1 1:已知數(shù)列已知數(shù)列aan n 滿(mǎn)足滿(mǎn)足(nnN*),假設(shè)當(dāng)),假設(shè)當(dāng)n nk k時(shí),時(shí), ,則當(dāng)則當(dāng)n nk k1 1時(shí),時(shí),a ak k1 1等于什么?等于什么?若假設(shè)若假
6、設(shè) ,則,則a ak k1 1等于什么?等于什么?11nnnaaa+=+1kak=221kak=-1221kak+=+.10思考思考2 2:若給出若給出a a1 11 1,則數(shù)列,則數(shù)列aan n 的通的通項(xiàng)公式是什么?若給出項(xiàng)公式是什么?若給出a a1 12 2,則數(shù)列,則數(shù)列aan n 的通項(xiàng)公式是什么?如何理解你的的通項(xiàng)公式是什么?如何理解你的結(jié)論?結(jié)論? 1nan=221nan=-思考思考3 3:已知數(shù)列已知數(shù)列 an n 滿(mǎn)足滿(mǎn)足a1 11 1,an+1n+12 2an n3 3,利用上述思想如何證明數(shù)列,利用上述思想如何證明數(shù)列 an n 的通項(xiàng)公式是的通項(xiàng)公式是an n2 2n+
7、1n+1-3-3?.11思考思考4 4:利用上述思想如何證明:對(duì)任利用上述思想如何證明:對(duì)任意意nnN*都有等式都有等式2 24 46 62n2nn(nn(n1)1)成立?成立? 思考思考5 5:上述證明方法叫做上述證明方法叫做數(shù)學(xué)歸納法數(shù)學(xué)歸納法,一般地,用數(shù)學(xué)歸納法證明一個(gè)與正整一般地,用數(shù)學(xué)歸納法證明一個(gè)與正整數(shù)數(shù)n n有關(guān)的命題,其證明步驟如何?有關(guān)的命題,其證明步驟如何?(1 1)證明當(dāng))證明當(dāng)n n取第一個(gè)值取第一個(gè)值n n0 0(n(n0 0NN*) )時(shí)時(shí)命題成立;命題成立;(2 2)假設(shè)當(dāng))假設(shè)當(dāng)n nk(knk(kn0 0,kNkN*) )時(shí)命題時(shí)命題成立,證明當(dāng)成立,證明
8、當(dāng)n nk k1 1時(shí)命題也成立時(shí)命題也成立. . .12思考思考6 6:數(shù)學(xué)歸納法由兩個(gè)步驟組成,其數(shù)學(xué)歸納法由兩個(gè)步驟組成,其中第一步是中第一步是歸納奠基歸納奠基,第二步是,第二步是歸納遞歸納遞推推,完成這兩個(gè)步驟的證明,實(shí)質(zhì)上解,完成這兩個(gè)步驟的證明,實(shí)質(zhì)上解決了什么問(wèn)題?決了什么問(wèn)題?逐一驗(yàn)證命題對(duì)從逐一驗(yàn)證命題對(duì)從n n0 0開(kāi)始的所有正整數(shù)開(kāi)始的所有正整數(shù)n n都成立都成立. .13理論遷移理論遷移 例例1.1.用數(shù)學(xué)歸納法證明:用數(shù)學(xué)歸納法證明: 222(1)(21)126n nnn+=L(nN(nN*). ). .14 例例2.2.已知數(shù)列:已知數(shù)列:試猜想其前試猜想其前n n
9、項(xiàng)和項(xiàng)和S Sn n的表達(dá)式,并數(shù)學(xué)歸的表達(dá)式,并數(shù)學(xué)歸納法證明納法證明. .1111,14 47 710(32)(31)nn創(chuàng)+LL31nnSn=+.15小結(jié)作業(yè)小結(jié)作業(yè) 1. 1.數(shù)學(xué)歸納法的實(shí)質(zhì)是建立一個(gè)無(wú)窮數(shù)學(xué)歸納法的實(shí)質(zhì)是建立一個(gè)無(wú)窮遞推機(jī)制,從而間接地驗(yàn)證了命題對(duì)從遞推機(jī)制,從而間接地驗(yàn)證了命題對(duì)從n0n0開(kāi)始的所有正整數(shù)開(kāi)始的所有正整數(shù)n n都成立,它能證明都成立,它能證明許多與正整數(shù)有關(guān)的命題,但與正整數(shù)許多與正整數(shù)有關(guān)的命題,但與正整數(shù)有關(guān)的命題不一定要用數(shù)學(xué)歸納法證明,有關(guān)的命題不一定要用數(shù)學(xué)歸納法證明,有些命題用數(shù)學(xué)歸納法也難以證明有些命題用數(shù)學(xué)歸納法也難以證明. .16 2. 2.歸納推理能發(fā)現(xiàn)結(jié)論,數(shù)學(xué)歸納歸納推理能發(fā)現(xiàn)結(jié)論,數(shù)學(xué)歸納法能證明結(jié)論,二者強(qiáng)強(qiáng)聯(lián)合,優(yōu)勢(shì)互法能證明結(jié)論,二者強(qiáng)強(qiáng)聯(lián)合,優(yōu)勢(shì)互補(bǔ),在解決與正整數(shù)有關(guān)的問(wèn)題時(shí),具補(bǔ),在解決與正整數(shù)有關(guān)的問(wèn)題時(shí),具有強(qiáng)大的功能作用有強(qiáng)大的功能作用. .但在數(shù)學(xué)歸納法的實(shí)但在數(shù)學(xué)歸納法的實(shí)施過(guò)程中,還
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司票據(jù)活動(dòng)方案
- 公司糖酒會(huì)活動(dòng)方案
- 公司芒種節(jié)氣活動(dòng)方案
- 2025年職業(yè)道德與社會(huì)責(zé)任考試試卷及答案
- 2025年自動(dòng)化專(zhuān)業(yè)實(shí)踐能力考核試題及答案
- 2025年文化創(chuàng)意產(chǎn)業(yè)相關(guān)工作者考試試題及答案
- 2025年體能訓(xùn)練師職業(yè)資格考試試卷及答案
- 2025年人力資本管理師職業(yè)資格考試題及答案
- 2025年軟件開(kāi)發(fā)工程師資格考試試卷及答案
- AR環(huán)境交互設(shè)計(jì)-洞察及研究
- 2025年河北省中考數(shù)學(xué)試卷真題
- 2025年山東省濰坊市壽光市英語(yǔ)七下期末學(xué)業(yè)水平測(cè)試試題含答案
- 高水平研究型大學(xué)建設(shè)中教育、科技與人才的協(xié)同發(fā)展研究
- 山西省2025年普通高中學(xué)業(yè)水平合格性考試適應(yīng)性測(cè)試化學(xué)試卷(含答案)
- 江西省九江市外國(guó)語(yǔ)學(xué)校2025屆英語(yǔ)八下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含答案
- 2025攝影服務(wù)合同模板
- 2025年全國(guó)統(tǒng)一高考語(yǔ)文試卷(全國(guó)一卷)含答案
- 2025年福建省高中自主招生模擬數(shù)學(xué)試卷試題(含答案)
- 2025年中考一模卷(貴州)英語(yǔ)試題含答案解析
- 餐飲運(yùn)營(yíng)餐飲管理流程考核試題及答案在2025年
- T/ISEAA 006-2024大模型系統(tǒng)安全測(cè)評(píng)要求
評(píng)論
0/150
提交評(píng)論