




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、求數(shù)列通項(xiàng)公式的十一種方法(方法全,例子全,歸納細(xì))總述:一利用遞推關(guān)系式求數(shù)列通項(xiàng)的7種方法:累加法、累乘法、待定系數(shù)法、倒數(shù)變換法、由和求通項(xiàng)定義法(根據(jù)各班情況適當(dāng)講)二。基本數(shù)列:等差數(shù)列、等比數(shù)列。等差數(shù)列、等比數(shù)列的求通項(xiàng)公式的方法是:累加和累乘,這二種方法是求數(shù)列通項(xiàng)公式的最基本方法。 三 求數(shù)列通項(xiàng)的方法的基本思路是:把所求數(shù)列通過(guò)變形,代換轉(zhuǎn)化為等差數(shù)列或等比數(shù)列。 四求數(shù)列通項(xiàng)的基本方法是:累加法和累乘法。 五數(shù)列的本質(zhì)是一個(gè)函數(shù),其定義域是自然數(shù)集的一個(gè)函數(shù)。一、累加法 1適用于: -這是廣義的等差數(shù)列 累加法是最基本的二個(gè)方法之一。例1 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。
2、解:由得則所以數(shù)列的通項(xiàng)公式為。例2 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解法一:由得則所以解法二:兩邊除以,得,則,故因此,則練習(xí)1.已知數(shù)列的首項(xiàng)為1,且寫出數(shù)列的通項(xiàng)公式. 答案:練習(xí)2.已知數(shù)列滿足,求此數(shù)列的通項(xiàng)公式. 答案:裂項(xiàng)求和 評(píng)注:已知,,其中f(n)可以是關(guān)于n的一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、分式函數(shù),求通項(xiàng).若f(n)是關(guān)于n的一次函數(shù),累加后可轉(zhuǎn)化為等差數(shù)列求和;若f(n)是關(guān)于n的二次函數(shù),累加后可分組求和;若f(n)是關(guān)于n的指數(shù)函數(shù),累加后可轉(zhuǎn)化為等比數(shù)列求和;若f(n)是關(guān)于n的分式函數(shù),累加后可裂項(xiàng)求和。二、累乘法 1.。 -適用于: -這是廣義的等比數(shù)列累乘法
3、是最基本的二個(gè)方法之二。2若,則兩邊分別相乘得,例4.設(shè)是首項(xiàng)為1的正項(xiàng)數(shù)列,且(=1,2, 3,),則它的通項(xiàng)公式是=_.解:已知等式可化為:()(n+1), 即時(shí),=.評(píng)注:本題是關(guān)于和的二次齊次式,可以通過(guò)因式分解(一般情況時(shí)用求根公式)得到與的更為明顯的關(guān)系式,從而求出.練習(xí).已知,求數(shù)列的通項(xiàng)公式.三、待定系數(shù)法 適用于 基本思路是轉(zhuǎn)化為等差數(shù)列或等比數(shù)列,而數(shù)列的本質(zhì)是一個(gè)函數(shù),其定義域是自然數(shù)集的一個(gè)函數(shù)。1形如,其中)型例6已知數(shù)列中,求數(shù)列的通項(xiàng)公式。解法一: 又是首項(xiàng)為2,公比為2的等比數(shù)列 ,即解法二: 兩式相減得,故數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,再用累加法的練習(xí)已
4、知數(shù)列中,求通項(xiàng)。答案:2形如: (其中q是常數(shù),且n0,1) 若p=1時(shí),即:,累加即可.若時(shí),即:,求通項(xiàng)方法有以下三種方向:i. 兩邊同除以.目的是把所求數(shù)列構(gòu)造成等差數(shù)列即: ,令,則,然后類型1,累加求通項(xiàng).ii.兩邊同除以 . 目的是把所求數(shù)列構(gòu)造成等差數(shù)列。 即: ,令,則可化為.然后轉(zhuǎn)化為類型5來(lái)解,iii.待定系數(shù)法:目的是把所求數(shù)列構(gòu)造成等差數(shù)列設(shè).通過(guò)比較系數(shù),求出,轉(zhuǎn)化為等比數(shù)列求通項(xiàng).注意:應(yīng)用待定系數(shù)法時(shí),要求pq,否則待定系數(shù)法會(huì)失效。例7已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解法一(待定系數(shù)法):設(shè),比較系數(shù)得,則數(shù)列是首項(xiàng)為,公比為2的等比數(shù)列,所以,即解法二(兩邊
5、同除以): 兩邊同時(shí)除以得:,下面解法略解法三(兩邊同除以): 兩邊同時(shí)除以得:,下面解法略*3形如 (其中k,b是常數(shù),且)例8 在數(shù)列中,求通項(xiàng).(逐項(xiàng)相減法)解:, 時(shí),兩式相減得 .令,則利用類型5的方法知 即 再由累加法可得. 亦可聯(lián)立 解出.*5.形如時(shí)將作為求解分析:原遞推式可化為的形式,比較系數(shù)可求得,數(shù)列為等比數(shù)列。例11 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:設(shè)比較系數(shù)得或,不妨取,(取-3 結(jié)果形式可能不同,但本質(zhì)相同)則,則是首項(xiàng)為4,公比為3的等比數(shù)列,所以練習(xí).數(shù)列中,若,且滿足,求.答案: .四、倒數(shù)變換法 適用于分式關(guān)系的遞推公式,分子只有一項(xiàng)例16 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:求倒數(shù)得為等差數(shù)列,首項(xiàng),公差為,五、由和求通項(xiàng)已知數(shù)列的各項(xiàng)均為正數(shù),且前n項(xiàng)和滿足求數(shù)列的通項(xiàng)公式。例19 已知數(shù)列的各項(xiàng)均為正數(shù),且前n項(xiàng)和滿足,且成等比數(shù)列,求數(shù)列的通項(xiàng)公式。解:對(duì)任意有 當(dāng)n=1時(shí),解得或當(dāng)n2時(shí), -整理得:各項(xiàng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二次結(jié)構(gòu)承包合同8篇
- 河南南陽(yáng)健身日活動(dòng)方案
- 檳榔活動(dòng)抽獎(jiǎng)活動(dòng)方案
- 校長(zhǎng)餐桌活動(dòng)方案
- 汽車年檢活動(dòng)策劃方案
- 漢服開(kāi)箱活動(dòng)方案
- 格力家電活動(dòng)方案
- 正定剪發(fā)活動(dòng)方案
- 民宿上山下鄉(xiāng)活動(dòng)方案
- 毽子手工活動(dòng)方案
- 中小學(xué)校長(zhǎng)招聘校長(zhǎng)招聘理論考試題
- 房地產(chǎn)基礎(chǔ)知識(shí)試題(附答案)
- GB/T 6896-2007鈮條
- GB/T 32151.6-2015溫室氣體排放核算與報(bào)告要求第6部分:民用航空企業(yè)
- GB/T 2543.2-2001紡織品紗線捻度的測(cè)定第2部分:退捻加捻法
- 小學(xué)體育暑假特色作業(yè)
- 2020四川考研數(shù)學(xué)二真題【含答案】
- 壓縮機(jī)拆除方案
- DB50-T 1293-2022 松材線蟲病疫木除治技術(shù)規(guī)范(標(biāo)準(zhǔn)文本)
- 微電子工藝實(shí)驗(yàn)報(bào)告
- 金屬材料檢驗(yàn)的標(biāo)準(zhǔn)課件
評(píng)論
0/150
提交評(píng)論