內(nèi)容大會(huì)現(xiàn)場(chǎng)emotionally intelligent robotics_第1頁(yè)
內(nèi)容大會(huì)現(xiàn)場(chǎng)emotionally intelligent robotics_第2頁(yè)
內(nèi)容大會(huì)現(xiàn)場(chǎng)emotionally intelligent robotics_第3頁(yè)
內(nèi)容大會(huì)現(xiàn)場(chǎng)emotionally intelligent robotics_第4頁(yè)
內(nèi)容大會(huì)現(xiàn)場(chǎng)emotionally intelligent robotics_第5頁(yè)
已閱讀5頁(yè),還剩49頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Emotionally Intelligent HCI and RoboticsZhengyou Zhang Distinguished Scientist Director, Tencent Robotics X zhengyouEvolution of Human-Computer InteractionHmmm,you might be tooemotional Virtual ReceptionistExample: Magic MirrorMicrosoft has developed a mirror that can read your emotionsRecognize and

2、 greet usersRead their emotionsDisplay the weather, time andother information.Motivations Understanding human emotion is the holy grail for human- computer interaction By combining it with speech and gesture understanding, computers will one day be able to communicate with human naturally Wide array

3、 of applicationsAffect-awarealAutism interventionHonest signalAffect-awaregame developmentassistant/companion devicesEmotion Intelligence EI is vital to make machine behave more like human Four branches of EI (Salovey and Mayer) Perceiving emotions understanding nonverbal signals Reasoning with emot

4、ions using emotions to prioritize attention Understanding emotions interpret the cause of emotion Managing emotions regulating and responding to emotions Computer EI is still in its infancyEmotion API for MCSAutisminterven-tionCustomerserviceAdvertisement/marketingalassistantMeetingdynamicsAdaptiveg

5、amingApplicationsEmotion APIsMCSOther sensors(heart rate, gps, eda, etc.)InputImageDepthAudioTextBasic EmotionsMicrosoft- Internal OnlyFacial Action Coding System (FACS)Mapping Between Basic Emotions & FACS1)2)Neutral BaselineExpressionless face1)2)3)Muscles around the eyes tightened“Crows feet”

6、 wrinkles around the eyesCheeks raised4)Lip corners raised diagonally (s)1)2)3)Eyebrow raisedEyelids pulled up (eyes widened)Mouth OpenBasic Emotion Types1)2)3)Inner corners of eyebrow raisedEyelids looseLip corners pulled down (frown)1)2)Eyebrows pulled down and togetherUpper & lower lids pulle

7、d up (glaring)Margin of lips pulled inLips may be tightened (optional)3)4)1)2)Eyes neutralLip corner raised and pulled back on only oneside of the faceBasic Emotion Types1)2)3)4)Eyebrows pulled downNose wrinkled Upper lip raised Lips loose1)2)3)Eyebrows pulled up and togetherUpper eyelids pulled up

8、Mouth stretched20 Years Ago Gabor WaveletsTwo-Layer PerceptronResultExamplesSensitivity AnalysisData Reduction Deleted 12 less informative points:16, 17, 18, 19, 20, 21,23, 24, 30, 13, 29, and3.Significance of Image Scalesk=1 (lowest res),5 (highest res)Major ChallengesInput data is unrestricted A s

9、tress test for face detection/alignment Huge variation in pose, lighting, skin tone, etc. Few existing work on emotion recognition in the wildPeople dont always agree on the corresponding emotion A single face can exhibit multiple emotions For subtle emotion, still image doesnt have enough informati

10、on (no temporal info)Most data available online are biased toward happy and neutralOur Approach A deep learning based approach24244812126densedensedense565MaxPooling8128128128MaxPooling64641024102448 With various data augmentation Affine transform, lighting augmentation, multi-cropping, voting, etc.

11、3123312333243324Data CollectionStart with FER 2013Web crawled + human labeling 48x48 image resolution28709 training examples3589 validation examples3590 test examples Very noisy dataTrain DWithout data augmentation65.07%With data augmentation 71.73%A Glimpse on Fear CategoryCorrect PredictionWrong P

12、redictionsadangrysurprisesadangrysadhappyangrysadhappyhappyneutraldisgustsurprisesadhappyangrysurprisesadangryData CollectionCrawled 4.5m images with emotional keywords166 emotional adjectives230 celebrity names, 100 popular first names, 166 people related wordsFace detection Active learningUse Dto

13、select confusing facial images for taggingSelf-paced learningUse Dto expand training data based on classification resultsRandomly sampledBiased towards rare emotion typesTagging: FACS vs. Basic EmotionsUse FACS (Facial Action Coding System)More accurate and less subjective.Easy expand to more emotio

14、ns.Cons: Expensive and require a certified tagger.Appearance based emotionCheap and doesnt require a certified tagger. Cons: Very noisy.Crowd Source TaggingTaggers are forced to choose one emotion out of 8, or tag the face image as “unknown”We started with at least 2 taggers agree and up to 5 tagger

15、s.Quality was very bad specially with subtle emotions.We retagged all our data with 10 taggers.Quality improved drastically (detailed next).How many taggers to we need?Numberoftaggers1009080706050403020100012345NUMBER OF TAGGERS678910AGREEMENT PERCENTAGEOld versus new labelEmotion Probability Distri

16、butionMajority Voting (MV)Each face is associated with one emotion, the one that has the majority vote.Multi-Label Learning (ML)All emotions above certain threshold are treated as valid emotion.Probabilistic Drawing (PLD)During training draw the target emotion according to its probability.Cross-entr

17、opy (CEL)Learn the actual probability distribution.Emotion Probability Distribution Training resultSchemesTrialsAccuracy12345MV83.60%84.89%83.15%83.39%84.23%83.85±0.63%ML83.69%83.63%83.63%84.62%84.08%83.97±0.36%PLD85.43%84.65%85.34%85.01%84.50%84.99±0.37%CEL85.01%84.59%84.32%84.80%84.

18、86%84.72±0.24%Final Data Set FER + In-houseTrainValidTestNeutral55,1801,1514,396Happiness26,2709041,801Surprise15,421422725Sad11,221418308Angry14,063305843Disgust3,3721987Fear5,44292198Contempt5,3292426Total136,2983,3358,384Performance Nov 2015 release 80.98% on test set Nov 2015 network on bet

19、ter tags 83.66% on test set Our latest deeper network 85.26% on test setNeuHapSurSadAngDisFeaConNeu88.81%3.09%4.03%2.00%1.23%0.11%0.66%0.07%Hap10.83%82.62%2.94%1.05%2.28%0.06%0.11%0.11%Sur7.31%1.66%83.03%0.14%2.48%0.00%4.97%0.41%Sad18.83%1.30%0.97%70.45%2.27%0.97%5.19%0.00%Ang6.05%1.66%2.02%0.95%88.

20、14%0.36%0.59%0.24%Dis18.39%2.30%3.45%2.30%19.54%51.72%0.00%2.30%Fea4.04%1.01%19.19%4.04%3.03%0.00%68.69%0.00%Con26.92%3.85%3.85%3.85%7.69%3.85%0.00%50.00%Some Examples“ Kim Kardashian, with apeculiar 12 percent tint of potential happiness.”More Examples“Pretty awesome that it detectedthe underlying

21、emotion.”“The face of pure happiness.”More Examples“According to Microsoft's Emotion API, Sidney Crosby was rather angry aboutscoring the goal that won Canada a gold medal at 2010's Olympics in Vancouver.”Emotion fromI want to try it Emotion APIImage andDetects happiness, sadness, surprise,

22、anger, fear, contempt, disgust or neutral.Returns score for each emotion, sum to oneREST API, samples inCurl, C#, Java, JavaScript, Object C, PHP, Python, RubyDemo:I want to build something similar Augmented Emotion Datasetand CodeRelabeled FER 2013 data set10 labels per imageCNTK source code for tr

23、aining and testingin PythonSame code we use for creatingEmotion APIReferences Z. Zhang, “Feature-Based Facial Expression Recognition: Sensitivity Analysis and Experiments With a Multi-LayerPerceptron”, International Journal of Pattern Recognition and Artificial Intelligence, Vol.13, No.6, pages 893-

24、911, 1999. E. Barsoum, C. Zhang, C. Canton Ferrer, and Z. Zhang, “Training Deep Networks for Facial Expression Recognition with Crowd- Sourced Label Distribution", in Proc. 18th ACM International Conference on Multimodal Interaction (ICMI), Tokyo, Japan, November 12-16, 2016.AcknowledgmentCha ZhangEmad Barsoum Anna Roth Chris ThrasherCristian Canton Ferrer Oliver WhyteWhy Tencent Robotics X? 騰訊的:、,都是以人 發(fā)展人技術(shù)是以人的延續(xù)以人 在騰訊“18歲”生日時(shí)說(shuō),騰訊迎來(lái)了“”,需要擔(dān)當(dāng)?shù)呢?zé)任 中國(guó)的一個(gè)迫切的問(wèn)題是的化; 發(fā)展人是一個(gè)應(yīng)對(duì)化的自然選擇 響應(yīng)工業(yè)4.0布局,幫助企業(yè)從數(shù)字化、智能化提升智能制造,人是必不可少的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論