談在初中數(shù)學(xué)教學(xué)中如何滲透數(shù)學(xué)思想和數(shù)學(xué)方法_第1頁
談在初中數(shù)學(xué)教學(xué)中如何滲透數(shù)學(xué)思想和數(shù)學(xué)方法_第2頁
談在初中數(shù)學(xué)教學(xué)中如何滲透數(shù)學(xué)思想和數(shù)學(xué)方法_第3頁
談在初中數(shù)學(xué)教學(xué)中如何滲透數(shù)學(xué)思想和數(shù)學(xué)方法_第4頁
談在初中數(shù)學(xué)教學(xué)中如何滲透數(shù)學(xué)思想和數(shù)學(xué)方法_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、談在初中數(shù)學(xué)教學(xué)中如何滲透數(shù)學(xué)思想和數(shù)學(xué)方法【】數(shù)學(xué)思想和方法是數(shù)學(xué)知識的精髓,在教學(xué)過程中滲透數(shù)學(xué)思想方法,能提高教學(xué)效果,提高學(xué)生數(shù)學(xué)素養(yǎng)。初中數(shù)學(xué)思想和方法主要有:數(shù)形結(jié)合的思想、分類討論的思想、整體思想、化歸的思想、轉(zhuǎn)化思想、歸納思想、類比的思想、函數(shù)的思想、辯證思想、方程與函數(shù)的思想方法。一、了解數(shù)學(xué)新課標(biāo)要求,把握教學(xué)方法1新課標(biāo)要求,滲透“層次”教學(xué)。 數(shù)學(xué)新課標(biāo)對初中數(shù)學(xué)中滲透的數(shù)學(xué)思想、方法劃分為三個層次,即“了解”、“理解”和“會應(yīng)用”。2從“方法”了解“思想”,用“思想”指導(dǎo)“方法”。在初中數(shù)學(xué)中,數(shù)學(xué)思想和方法,兩者之間很難分割,它們既相輔相成,又相互蘊含。在數(shù)學(xué)教學(xué)中

2、,通過對具體數(shù)學(xué)方法的學(xué)習(xí),使學(xué)生逐步領(lǐng)略內(nèi)含于方法的數(shù)學(xué)思想;同時,數(shù)學(xué)思想的指導(dǎo),又深化了數(shù)學(xué)方法的運用。二、遵循認(rèn)識規(guī)律,把握教學(xué)原則,實施創(chuàng)新教育1滲透“方法”,了解“思想”;2、訓(xùn)練“方法”,理解“思想”;3、掌握“方法”,運用“思想”;4、提煉“方法”,完善“思想”。三、初中階段常見的幾種數(shù)學(xué)思想方法舉例說明【】數(shù)學(xué)思想數(shù)學(xué)方法【正文】數(shù)學(xué)思想和方法是數(shù)學(xué)知識的精髓,又是知識轉(zhuǎn)化為能力的橋梁。目前初中階段,主要數(shù)學(xué)思想方法有:數(shù)形結(jié)合的思想、分類討論的思想、整體思想、化歸的思想、轉(zhuǎn)化思想、歸納思想、類比的思想、函數(shù)的思想、辯證思想、方程與函數(shù)的思想方法等。提高學(xué)生的數(shù)學(xué)素質(zhì)、指導(dǎo)學(xué)

3、生學(xué)習(xí)數(shù)學(xué)方法,必須指導(dǎo)學(xué)生緊緊抓住掌握數(shù)學(xué)思想方法,這也是數(shù)學(xué)教學(xué)中的最重要的一環(huán)。在初中數(shù)學(xué)教材中集中了大量的優(yōu)秀例題和習(xí)題,它們所體現(xiàn)的數(shù)學(xué)知識和數(shù)學(xué)方法固然重要,但其蘊涵的數(shù)學(xué)思想?yún)s更顯重要,作為一線教師,要善于挖掘例題、習(xí)題的潛在功能。九年義務(wù)教育全日制初級中學(xué)數(shù)學(xué)新課程標(biāo)準(zhǔn)中指出:教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者。新課程把數(shù)學(xué)思想、方法作為基礎(chǔ)知識的重要組成部分,在數(shù)學(xué)新課程標(biāo)準(zhǔn)中明

4、確提出來,這不僅是課標(biāo)體現(xiàn)義務(wù)教育性質(zhì)的重要表現(xiàn),也是對學(xué)生實施創(chuàng)新教育、培訓(xùn)創(chuàng)新思維的重要保證。一、了解數(shù)學(xué)新課標(biāo)要求,把握教學(xué)方法所謂數(shù)學(xué)思想,就是對數(shù)學(xué)知識和方法的本質(zhì)認(rèn)識,是對數(shù)學(xué)規(guī)律的理性認(rèn)識。所謂數(shù)學(xué)方法,就是解決數(shù)學(xué)問題的根本程序,是數(shù)學(xué)思想的具體反映。數(shù)學(xué)思想是數(shù)學(xué)的靈魂,數(shù)學(xué)方法是數(shù)學(xué)的行為。運用數(shù)學(xué)方法解決問題的過程就是感性認(rèn)識不斷積累的過程,當(dāng)這種量的積累達(dá)到一定程序時就產(chǎn)生了質(zhì)的飛躍,從而上升為數(shù)學(xué)思想。若把數(shù)學(xué)知識看作一幅構(gòu)思巧妙的藍(lán)圖而建筑起來的一座宏偉大廈,那么數(shù)學(xué)方法相當(dāng)于建筑施工的手段,而這張藍(lán)圖就相當(dāng)于數(shù)學(xué)思想。1新課標(biāo)要求,滲透“層次”教學(xué)。 數(shù)學(xué)新課標(biāo)對

5、初中數(shù)學(xué)中滲透的數(shù)學(xué)思想、方法劃分為三個層次,即“了解”、“理解”和“會應(yīng)用”。在教學(xué)中,要求學(xué)生“了解”數(shù)學(xué)思想有:數(shù)形結(jié)合的思想、分類的思想、化歸的思想、類比的思想和函數(shù)的思想等。這里需要說明的是,有些數(shù)學(xué)思想在數(shù)學(xué)新課標(biāo)中并沒有明確提出來,比如:化歸思想是滲透在學(xué)習(xí)新知識和運用新知識解決問題的過程中的,方程(組)的解法中,就貫穿了由“一般化”向“特殊化”轉(zhuǎn)化的思想方法。教師在整個教學(xué)過程中,不僅應(yīng)該使學(xué)生能夠領(lǐng)悟到這些數(shù)學(xué)思想的應(yīng)用,而且要激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)思想的好奇心和求知欲,通過獨立思考,不斷追求新知,發(fā)現(xiàn)、提出、分析并創(chuàng)造性地解決問題。在數(shù)學(xué)新課標(biāo)中要求“了解”的方法有:分類法、類比

6、法、反證法等。要求“理解”的或“會應(yīng)用”的方法有:待定系數(shù)法、消元法、降次法、配方法、換元法、 圖象法等。在教學(xué)中,要認(rèn)真把握好“了解”、 “理解”、“會應(yīng)用”這三個層次。不能隨意將“了解”的層次提高到“理解”的層次,把“理解”的層次提高到“會應(yīng)用”的層次,不然的話,學(xué)生初次接觸就會感到數(shù)學(xué)思想、方法抽象難懂,高深莫測,從而導(dǎo)致他們失去信心。如初中數(shù)學(xué)三年級上冊中明確提出“反證法”的教學(xué)思想,且揭示了運用“反證法”的一般步驟, 但 數(shù)學(xué)新課標(biāo)只是把“反證法”定位在通過實例,“體會”反證法的含義的層次上,我們在教學(xué)中,應(yīng)牢牢地把握住這個“度”,千萬不能隨意拔高、加深。否則,教學(xué)效果將是得不償失。

7、2從“方法”了解“思想”,用“思想”指導(dǎo)“方法”。關(guān)于初中數(shù)學(xué)中的數(shù)學(xué)思想和方法內(nèi)涵與外延,目前尚無公認(rèn)的定義。其實,在初中數(shù)學(xué)中,許多數(shù)學(xué)思想和方法是一致的,兩者之間很難分割。它們既相輔相成,又相互蘊含。只是方法較具體,是實施有關(guān)思想的技術(shù)手段,而思想是屬于數(shù)學(xué)觀念一類的東西,比較抽象。因此,在初中數(shù)學(xué)教學(xué)中,加強學(xué)生對數(shù)學(xué)方法的理解和應(yīng)用,以達(dá)到對數(shù)學(xué)思想的了解,使數(shù)學(xué)思想與方法得到交融的有效方法。比如化歸思想,可以說是貫穿于整個初中階段的教學(xué),具體表現(xiàn)為從未知到已知的轉(zhuǎn)化、一般到特殊的轉(zhuǎn)化、局部與整體的轉(zhuǎn)化,課本引入了許多數(shù)學(xué)方法,比如換元法,消元降次法、圖象法、待定系數(shù)法、配方法等。在

8、數(shù)學(xué)教學(xué)中,通過對具體數(shù)學(xué)方法的學(xué)習(xí),使學(xué)生逐步領(lǐng)略內(nèi)含于方法的數(shù)學(xué)思想;同時, 數(shù)學(xué)思想的指導(dǎo),又深化了數(shù)學(xué)方法的運用。這樣處置,使“方法”與“思想”珠聯(lián)璧合,將創(chuàng)新思維和創(chuàng)新精神寓于教學(xué)之中,教學(xué)才能卓有成效。二、遵循認(rèn)識規(guī)律,把握教學(xué)原則,實施創(chuàng)新教育要達(dá)到數(shù)學(xué)新課標(biāo)的基本要求,教學(xué)中應(yīng)遵循以下幾項原則:1滲透“方法”,了解“思想”。由于初中學(xué)生數(shù)學(xué)知識比較貧乏,抽象思維能力也較為薄弱,把數(shù)學(xué)思想、方法作為一門獨立的課程還缺乏應(yīng)有的基礎(chǔ)。因而只能將數(shù)學(xué)知識作為載體,把數(shù)學(xué)思想和方法的教學(xué)滲透到數(shù)學(xué)知識的教學(xué)中。 教師要把握好滲透的契機,重視數(shù)學(xué)概念、公式、 定理、法則的提出過程,知識的形

9、成、發(fā)展過程,解決問題和規(guī)律的概括過程,使學(xué)生在這些過程中展開思維,從而發(fā)展他們的科學(xué)精神和創(chuàng)新意識,形成獲取、發(fā)展新知識,運用新知識解決問題。忽視或壓縮這些過程,一味灌輸知識的結(jié)論,就必然失去滲透數(shù)學(xué)思想、方法的一次次良機。如北師大版初中數(shù)學(xué)七年級上冊課本有理數(shù)這一章,與原來部編教材相比,它少了一節(jié)“有理數(shù)大小的比較”,而它的要求則貫穿在整章之中。在數(shù)軸教學(xué)之后,就引出了“在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大”,“正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于一切負(fù)數(shù)”。而兩個負(fù)數(shù)比較大小的全過程單獨地放在絕對值教學(xué)之后解決。教師在教學(xué)中應(yīng)把握住這個逐級滲透的原則,既使這一章節(jié)的重點突出,難點

10、分散;又向?qū)W生滲透了數(shù)形結(jié)合的思想,學(xué)生易于接受。在滲透數(shù)學(xué)思想、方法的過程中,教師要精心設(shè)計、有機結(jié)合,要有意識地潛移默化地啟發(fā)學(xué)生領(lǐng)悟蘊含于數(shù)學(xué)之中的種種數(shù)學(xué)思想方法,切忌生搬硬套,和盤托出,脫離實際等錯誤做法。比如,教學(xué)二次不等式解集時結(jié)合二次函數(shù)圖象來理解和記憶,總結(jié)歸納出解集在“兩根之間”、“兩根之外”,利用數(shù)形結(jié)合方法,從而比較順利地完成新舊知識的過渡。2、訓(xùn)練“方法”,理解“思想”。數(shù)學(xué)思想的內(nèi)容是相當(dāng)豐富的,方法也有難有易。因此,必須分層次地進行滲透和教學(xué)。這就需要教師全面地熟悉初中三個年級的教材,鉆研教材, 努力挖掘教材中進行數(shù)學(xué)思想、方法滲透的各種因素,對這些知識從思想方法

11、的角度作認(rèn)真分析,按照初中三個年級不同的年齡特征、知識掌握的程度、認(rèn)知能力、理解能力和可接受性能力由淺入深,由易到難分層次地貫徹數(shù)學(xué)思想、方法的教學(xué)。如在教學(xué)同底數(shù)冪的乘法時,引導(dǎo)學(xué)生先研究底數(shù)、指數(shù)為具體數(shù)的同底數(shù)冪的運算方法和運算結(jié)果,從而歸納出一般方法,在得出用a 表示底數(shù),用m、n表示指數(shù)的一般法則以后,再要求學(xué)生應(yīng)用一般法則來指導(dǎo)具體的運算。在整個教學(xué)中,教師分層次地滲透了歸納和演繹的數(shù)學(xué)方法,對學(xué)生養(yǎng)成良好的思維習(xí)慣起重要作用。3、掌握“方法”,運用“思想”。數(shù)學(xué)知識的學(xué)習(xí)要經(jīng)過聽講、復(fù)習(xí)、做習(xí)題等才能掌握和鞏固。數(shù)學(xué)思想、方法的形成同樣有一個循序漸進的過程。只有經(jīng)過反復(fù)訓(xùn)練才能使

12、學(xué)生真正領(lǐng)會。另外,使學(xué)生形成自覺運用數(shù)學(xué)思想方法的意識,必須建立起學(xué)生自我的“數(shù)學(xué)思想方法系統(tǒng)”,這更需要一個反復(fù)訓(xùn)練、不斷完善的過程。比如,運用類比的數(shù)學(xué)方法,在新概念提出、新知識點的講授過程中,可以使學(xué)生易于理解和掌握。學(xué)習(xí)一次函數(shù)的時候,我們可以用乘法公式類比;在學(xué)習(xí)二次函數(shù)有關(guān)性質(zhì)時,我們可以和一元二次方程的根與系數(shù)性質(zhì)類比。通過多次重復(fù)性的演示,使學(xué)生真正理解、掌握類比的數(shù)學(xué)方法。4、提煉“方法”,完善“思想”。教學(xué)中要適時恰當(dāng)?shù)貙?shù)學(xué)方法給予提煉和概括,讓學(xué)生有明確的印象。由于數(shù)學(xué)思想、方法分散在各個不同部分,而同一問題又可以用不同的數(shù)學(xué)思想、方法來解決。因此,教師的概括、分析是

13、十分重要的。教師還要有意識地培養(yǎng)學(xué)生自我提煉、揣摩概括數(shù)學(xué)思想方法的能力,這樣才能把數(shù)學(xué)思想、方法的教學(xué)落在實處。三、初中階段常見的幾種數(shù)學(xué)思想方法舉例說明。如數(shù)形結(jié)合思想:數(shù)和式是問題的抽象和概括、圖形和圖像是問題的具體和直觀的反映。初中代數(shù)教材列方程解應(yīng)用題所選很多是采用了圖示法的例題,所以,教學(xué)過程中要充分利用圖形的直觀性和具體性,引導(dǎo)學(xué)生從圖形上發(fā)現(xiàn)數(shù)量關(guān)系找出解決問題的突破口。學(xué)生掌握了這一思想要比掌握一個公式或一種具體方法更有價值,對解決問題更具有指導(dǎo)意義。再如在講“圓與圓的位置關(guān)系”時,可自制圓形紙板,進行運動實驗,讓學(xué)生首先從形的角度認(rèn)識圓與圓的位置關(guān)系,然后可激發(fā)學(xué)生積極主動

14、探索兩圓的位置關(guān)系反映到數(shù)上有何特征。這種借助于形通過數(shù)的運算推理研究問題的數(shù)形結(jié)合思想,在教學(xué)中要不失時機地滲透;這樣不僅可提高學(xué)生的遷移思維能力,還可培養(yǎng)學(xué)生的數(shù)形轉(zhuǎn)換能力和多角度思考問題的習(xí)慣。方程思想:眾所周知,方程思想是初等代數(shù)思想方法的主體,應(yīng)用十分廣泛,可謂數(shù)學(xué)大廈基石之一,在眾多的數(shù)學(xué)思想中顯得十分重要。所謂方程思想,主要是指建立方程( 組 ) 解決實際問題的思想方法。教材中大量出現(xiàn)這種思想方法,如列方程解應(yīng)用題,求函數(shù)解析式,利用根的判別式、根與系數(shù)關(guān)系求字母系數(shù)的值等。教學(xué)時,可有意識的引導(dǎo)學(xué)生發(fā)現(xiàn)等量關(guān)系從而建立方程。如講“利用待定系數(shù)法確定二次函數(shù)解析式”時,可啟發(fā)學(xué)生

15、去發(fā)現(xiàn)確定解析式的關(guān)鍵是求出各項系數(shù),可把他們看成三個“未知量”告訴學(xué)生利用方程思想來解決,那學(xué)生就會自覺的去找三個等量關(guān)系建立方程組。在這里如果單講解題步驟, 就會顯得呆板、僵硬, 學(xué)生只知其然,不知其所以然。與此同時,還要注意滲透其他與方程思想有密切關(guān)系的數(shù)學(xué)思想,諸如換元,消元,降次,函數(shù),化歸,整體,分類等思想,這樣可起到撥亮一盞燈,照亮一大片的作用。辯證思想:辯證思想是科學(xué)世界觀在數(shù)學(xué)中的體現(xiàn),是最重要的數(shù)學(xué)思想之一。自然界中的一切現(xiàn)象和過程都存在著對立統(tǒng)一規(guī)律,數(shù)學(xué)中的有理數(shù)和無理數(shù)、整式和分式、已知和未知、特殊和一般、常量和變量、整體和局部等同樣蘊涵著這一辯證思想。因此,教學(xué)時,

16、應(yīng)有意識地滲透。如初三分式方程一節(jié),就體現(xiàn)了分式方程與整式方程的對立統(tǒng)一思想,教學(xué)時,不能只簡單介紹分式方程的概念和解法,而要滲透上述思想,我們可以從復(fù)習(xí)整式和分式的概念出發(fā),然后依據(jù)辯證思想自然引出分式方程,接著帶領(lǐng)學(xué)生領(lǐng)會兩個概念的對立性( 非此即彼) 和統(tǒng)一性( 統(tǒng)稱有理方程) ,再利用未知與已知的轉(zhuǎn)化思想啟發(fā)學(xué)生說出分式方程的解題基本思想,從而發(fā)現(xiàn)兩種方程在解法上雖有不同,但卻存在內(nèi)在的必然聯(lián)系。這樣,學(xué)生在知曉整式方程與分式方程第 12 頁概念和解法的辯證關(guān)系后,就能進一步理解和掌握分式方 程,收到一種居高臨下,深入淺出的教學(xué)效果。因此,抓辯 證思想教學(xué),不僅可以培養(yǎng)學(xué)生的科學(xué)意識,而且可提高學(xué) 生的探索能

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論