數(shù)學(xué)建?;貧w分析matlab版_第1頁
數(shù)學(xué)建?;貧w分析matlab版_第2頁
數(shù)學(xué)建?;貧w分析matlab版_第3頁
數(shù)學(xué)建模回歸分析matlab版_第4頁
數(shù)學(xué)建?;貧w分析matlab版_第5頁
已閱讀5頁,還剩46頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2022-3-71數(shù)學(xué)建模與數(shù)學(xué)實驗數(shù)學(xué)建模與數(shù)學(xué)實驗回歸分析回歸分析實驗?zāi)康膶嶒災(zāi)康膶嶒瀮?nèi)容實驗內(nèi)容2、掌握用數(shù)學(xué)軟件求解回歸分析問題。、掌握用數(shù)學(xué)軟件求解回歸分析問題。1、直觀了解回歸分析基本內(nèi)容。、直觀了解回歸分析基本內(nèi)容。1 1、回歸分析的基本理論回歸分析的基本理論。3 3、實驗作業(yè)。實驗作業(yè)。2、用數(shù)學(xué)軟件求解回歸分析問題。用數(shù)學(xué)軟件求解回歸分析問題。2022-3-73回歸分析回歸分析數(shù)學(xué)模型及定義數(shù)學(xué)模型及定義*模型參數(shù)估計模型參數(shù)估計* *檢驗、預(yù)測與控制檢驗、預(yù)測與控制可線性化的一元非線可線性化的一元非線性回歸(曲線回歸性回歸(曲線回歸)數(shù)學(xué)模型及定義數(shù)學(xué)模型及定義*模型參數(shù)估

2、計模型參數(shù)估計*多元線性回歸中的多元線性回歸中的檢驗與預(yù)測檢驗與預(yù)測逐步回歸分析逐步回歸分析2022-3-74一、數(shù)學(xué)模型一、數(shù)學(xué)模型例例1 測16名成年女子的身高與腿長所得數(shù)據(jù)如下:以身高x為橫坐標(biāo),以腿長y為縱坐標(biāo)將這些數(shù)據(jù)點(xI,yi)在平面直角坐標(biāo)系上標(biāo)出.1401451501551601658486889092949698100102散點圖xy102022-3-75 一般地,稱由xy10確定的模型為一一元元線線性性回回歸歸模模型型,記為 210, 0DExy固定的未知參數(shù)0、1稱為回歸系數(shù),自變量 x 也稱為回歸變量.一元線性回歸分析的主要任務(wù)主要任務(wù)是:xY10,稱為 y 對對

3、x的的回回歸歸直直線線方方程程.返回返回2022-3-76二、模型參數(shù)估計二、模型參數(shù)估計1、回歸系數(shù)的最小二乘估計、回歸系數(shù)的最小二乘估計有 n 組獨立觀測值, (x1,y1) , (x2,y2) , (xn,yn) 設(shè) 相互獨立且,niiiiDEnixy., , 0,.,2 , 1,21210 記 niiiniixyQQ12101210),(最小二乘法最小二乘法就是選擇0和1的估計0,1使得 ),(min),(10,1010QQ2022-3-7722110 xxyxxyxy解得(經(jīng)經(jīng)驗驗)回回歸歸方方程程為為: )(110 xxyxy 或 niiniiixxyyxx1211 其中niini

4、iynyxnx111,1,niiiniiyxnxyxnx11221,1. 2022-3-782、2的的無無偏偏估估計計記 niniiiiieyyxyQQ11221010)(),(稱 Qe為殘殘差差平平方方和和或剩剩余余平平方方和和. 2的的無無偏偏估估計計為 )2(2nQee稱2e為剩剩余余方方差差(殘殘差差的的方方差差) , 2e分別與0、1獨立 。 e稱為剩剩余余標(biāo)標(biāo)準(zhǔn)準(zhǔn)差差.返回返回2022-3-79三、檢驗、預(yù)測與控制三、檢驗、預(yù)測與控制1、回歸方程的顯著性檢驗、回歸方程的顯著性檢驗 對回歸方程xY10的顯著性檢驗,歸結(jié)為對假設(shè) 0:; 0:1110HH進(jìn)行檢驗.假設(shè)0:10H被拒絕,

5、則回歸顯著,認(rèn)為 y 與 x 存在線性關(guān)系,所求的線性回歸方程有意義;否則回歸不顯著,y 與 x 的關(guān)系不能用一元線性回歸模型來描述,所得的回歸方程也無意義.2022-3-710()F檢驗法檢驗法 當(dāng)0H成立時, )2/( nQUFeF(1,n-2)其中 niiyyU12(回回歸歸平平方方和和)故 F)2, 1 (1nF,拒絕0H,否則就接受0H. ()t檢驗法檢驗法niiniixxxnxxxL12212)(其中當(dāng)0H成立時,exxLT1t(n-2)故)2(21ntT,拒絕0H,否則就接受0H.2022-3-711()r檢驗法檢驗法當(dāng)|r| r1-時,拒絕H0;否則就接受H0.記 niniii

6、niiiyyxxyyxxr11221)()()(其中2, 121111nFnr2022-3-7122、回歸系數(shù)的置信區(qū)間、回歸系數(shù)的置信區(qū)間0和和1置置信信水水平平為為1-的的置置信信區(qū)區(qū)間間分分別別為為 xxexxeLxnntLxnnt221022101)2(,1)2(和 xxexxeLntLnt/)2(,/)2(2112112的的置置信信水水平平為為 1-的的置置信信區(qū)區(qū)間間為為 )2(,)2(22221nQnQee2022-3-7133、預(yù)測與控制、預(yù)測與控制(1)預(yù)測)預(yù)測用 y0的回歸值0100 xy作為 y0的的預(yù)預(yù)測測值值.0y的置信水平為1的預(yù)預(yù)測測區(qū)區(qū)間間為 )(),(000

7、0 xyxy其中xxeLxxnntx2021011)2()( 特 別 , 當(dāng) n 很 大 且 x0在x附 近 取 值 時 ,y 的 置 信 水 平 為1的預(yù)預(yù) 測測 區(qū)區(qū) 間間 近近 似似 為為 2121,uyuyee2022-3-714(2)控制)控制要求:xy10的值以1的概率落在指定區(qū)間yy ,只要控制 x 滿足以下兩個不等式 yxyyxy )(,)(要求)(2xyy .若yxyyxy )(,)(分別有解x和x ,即yxyyxy )(,)(. 則xx ,就是所求的 x 的控制區(qū)間.返回返回2022-3-715四、可線性化的一元非線性回歸四、可線性化的一元非線性回歸 (曲線回歸)(曲線回歸

8、)例例2 出鋼時所用的盛鋼水的鋼包,由于鋼水對耐火材料的侵蝕, 容積不斷增大.我們希望知道使用次數(shù)與增大的容積之間的關(guān) 系.對一鋼包作試驗,測得的數(shù)據(jù)列于下表:使用次數(shù)增大容積使用次數(shù)增大容積234567896.428.209.589.509.7010.009.939.991011121314151610.4910.5910.6010.8010.6010.9010.762022-3-71624681012141666.577.588.599.51010.511散點圖此即非線性回歸非線性回歸或曲線回歸曲線回歸 問題(需要配曲線)配曲線的一般方法是:配曲線的一般方法是:先對兩個變量 x 和 y 作

9、n 次試驗觀察得niyxii,.,2 , 1),(畫出散點圖,根據(jù)散點圖確定須配曲線的類型.然后由 n 對試驗數(shù)據(jù)確定每一類曲線的未知參數(shù) a 和 b.采用的方法是通過變量代換把非線性回歸化成線性回歸,即采用非線性回歸線性化的方法.2022-3-717通常選擇的六類曲線如下:(1)雙雙曲曲線線xbay1(2)冪冪函函數(shù)數(shù)曲曲線線y=abx, 其中 x0,a0(3)指指數(shù)數(shù)曲曲線線 y=abxe其中參數(shù) a0.(4)倒倒指指數(shù)數(shù)曲曲線線 y=axbe/其中 a0,(5)對對數(shù)數(shù)曲曲線線y=a+blogx,x0(6)S型型曲曲線線xbeay1返回返回解例2.由散點圖我們選配倒指數(shù)曲線y=axbe/

10、根據(jù)線性化方法,算得4587. 2,1107. 1Ab由此 6789.11Aea最后得 xey1107. 16789.112022-3-718一、數(shù)學(xué)模型及定義一、數(shù)學(xué)模型及定義一般稱 nICOVEXY2),(, 0)( 為高斯馬爾柯夫線性模型(k k 元線性回歸模型元線性回歸模型),并簡記為),(2nIXY nyyY.1,nknnkkxxxxxxxxxX.1.1.1212222111211,k.10,n.21kkxxy.110稱為回回歸歸平平面面方方程程. 返回返回線性模型),(2nIXY考慮的主要問題是: (1)用試驗值(樣本值)對未知參數(shù)和2作點估計和假設(shè)檢驗,從而建立 y 與kxxx,

11、.,21之間的數(shù)量關(guān)系; (2)在,.,0022011kkxxxxxx處對 y 的值作預(yù)測與控制,即對 y 作區(qū)間估計. 2022-3-719二、模型參數(shù)估計二、模型參數(shù)估計1、對對i和和2作作估估計計用最小二乘法求k,.,0的估計量:作離差平方和 niikkiixxyQ12110.選擇k,.,0使 Q 達(dá)到最小。 得到的i代入回歸平面方程得: kkxxy.110稱為經(jīng)經(jīng)驗驗回回歸歸平平面面方方程程.i稱為經(jīng)經(jīng)驗驗回回歸歸系系數(shù)數(shù).注注意意 :服從 p+1 維正態(tài)分 布,且為的無偏估 計,協(xié)方差陣為C2. C=L-1=(cij), L=XX解得估計值 YXXXTT12022-3-7202、 多

12、多 項項 式式 回回 歸歸設(shè)變量 x、Y的回歸模型為 ppxxxY.2210其中 p 是已知的,), 2 , 1(pii是未知參數(shù),服從正態(tài)分布), 0(2N. 令iixx ,i=1,2,k 多項式回歸模型變?yōu)槎嘣€性回歸模型.返回返回 kkxxxY.2210稱為回歸多項式回歸多項式.上面的回歸模型稱為多項式回歸多項式回歸.2022-3-721三、多元線性回歸中的檢驗與預(yù)測三、多元線性回歸中的檢驗與預(yù)測1、 線線 性性 模模 型型 和和 回回 歸歸 系系 數(shù)數(shù) 的的 檢檢 驗驗假設(shè) 0.:100kH ()F檢驗法檢驗法()r檢驗法檢驗法定義eyyQUULUR為 y 與 x1,x2,.,xk的多

13、多元元相相關(guān)關(guān)系系數(shù)數(shù)或復(fù)復(fù)相相關(guān)關(guān)系系數(shù)數(shù)。由于2211RRkknF,故用 F 和用 R檢驗是等效的。當(dāng) H0成立時,)1,()1/(/knkFknQkUFe如果 F F1-(k,n-k-1) ,則拒絕 H0,認(rèn)為 y 與 x1, xk之間顯著地有線性關(guān)系;否則就接受 H0,認(rèn)為 y 與 x1, xk之間線性關(guān)系不顯著.其中 niiyyU12(回回歸歸平平方方和和) niiieyyQ12)(殘差平方和)殘差平方和)2022-3-7222、預(yù)測、預(yù)測(1)點預(yù)測)點預(yù)測求出回歸方程kkxxy.110,對于給定自變量的值kxx ,.,*1,用*110*.kkxxy來預(yù)測*110.kkxxy.稱*

14、 y為*y的點預(yù)測.(2)區(qū)間預(yù)測)區(qū)間預(yù)測y 的1的預(yù)測區(qū)間(置信)區(qū)間為),(21yy,其中) 1(1) 1(12/10022/1001kntxxcyykntxxcyykikjjiijekikjjiijeC=L-1=(cij), L=XX1knQee返回返回2022-3-723四、逐步回歸分析四、逐步回歸分析(4)“有進(jìn)有出”的逐步回歸分析。(1)從所有可能的因子(變量)組合的回歸方程中選擇最優(yōu)者;(2)從包含全部變量的回歸方程中逐次剔除不顯著因子;(3)從一個變量開始,把變量逐個引入方程;選擇“最優(yōu)”的回歸方程有以下幾種方法: “最優(yōu)最優(yōu)”的回歸方程的回歸方程就是包含所有對Y有影響的變量

15、, 而不包含對Y影響不顯著的變量回歸方程。 以第四種方法,即逐步回歸分析法逐步回歸分析法在篩選變量方面較為理想.2022-3-724 這個過程反復(fù)進(jìn)行,直至既無不顯著的變量從回歸方程中剔除,又無顯著變量可引入回歸方程時為止。逐步回歸分析法逐步回歸分析法的思想: 從一個自變量開始,視自變量Y作用的顯著程度,從大到地依次逐個引入回歸方程。 當(dāng)引入的自變量由于后面變量的引入而變得不顯著時,要將其剔除掉。 引入一個自變量或從回歸方程中剔除一個自變量,為逐步回歸的一步。 對于每一步都要進(jìn)行Y值檢驗,以確保每次引入新的顯著性變量前回歸方程中只包含對Y作用顯著的變量。返回返回2022-3-7251、多元線性

16、回歸、多元線性回歸2、多項式回歸、多項式回歸3、非線性回歸、非線性回歸4、逐步回歸、逐步回歸返回返回2022-3-726多元線性回歸多元線性回歸 b=regress( Y, X )npnnppxxxxxxxxxX.1.1.1212222111211nYYYY.21pb.101、確定回歸系數(shù)的點估計值:確定回歸系數(shù)的點估計值:ppxxy.110對一元線性回歸,取 p=1 即可2022-3-7273、畫出殘差及其置信區(qū)間:畫出殘差及其置信區(qū)間: rcoplot(r,rint)2、求回歸系數(shù)的點估計和區(qū)間估計、并檢驗回歸模型:求回歸系數(shù)的點估計和區(qū)間估計、并檢驗回歸模型: b, bint,r,rin

17、t,stats=regress(Y,X,alpha)回歸系數(shù)的區(qū)間估計殘差用于檢驗回歸模型的統(tǒng)計量,有四個數(shù)值:相關(guān)系數(shù)r2、F值、與F對應(yīng)的概率p,變量誤差估計置信區(qū)間 顯著性水平(缺省時為0.05) 相關(guān)系數(shù) r2越接近 1,說明回歸方程越顯著; F F1-(k,n-k-1)時拒絕 H0,F(xiàn) 越大,說明回歸方程越顯著; 與 F 對應(yīng)的概率 p時拒絕 H0,回歸模型成立.2022-3-728例例1 解:解:1、輸入數(shù)據(jù):輸入數(shù)據(jù): x=143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164; X=ones(16,1) x

18、; Y=88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102;2、回歸分析及檢驗:回歸分析及檢驗: b,bint,r,rint,stats=regress(Y,X) b,bint,statsTo MATLAB(liti11)2022-3-7293、殘差分析,作殘差圖:、殘差分析,作殘差圖: rcoplot(r,rint) 從殘差圖可以看出,除第二個數(shù)據(jù)外,其余數(shù)據(jù)的殘差離零點均較近,且殘差的置信區(qū)間均包含零點,這說明回歸模型 y=-16.073+0.7194x能較好的符合原始數(shù)據(jù),而第二個數(shù)據(jù)可視為異常點. 4、預(yù)測及作圖:、預(yù)測及作圖:z=b(1

19、)+b(2)*x plot(x,Y,k+,x,z,r)246810121416-5-4-3-2-101234Residual Case Order PlotResidualsCase Number返回返回To MATLAB(liti12)2022-3-730多多 項項 式式 回回 歸歸 (一)一元多項式回歸(一)一元多項式回歸 (1)確定多項式系數(shù)的命令:p,S=polyfit(x,y,m) 其中 x=(x1,x2,xn) ,y=(y1,y2,yn) ;p=(a1,a2,am+1)是多項式 y=a1xm+a2xm-1+amx+am+1的系數(shù);S 是一個矩陣,用來估計預(yù)測誤差.(2)一元多項式回

20、歸命令:polytool(x,y,m)1、回歸:、回歸:y=a1xm+a2xm-1+amx+am+12、預(yù)測和預(yù)測誤差估計:、預(yù)測和預(yù)測誤差估計:(1)Y=polyval(p,x)求polyfit所得的回歸多項式在x處 的預(yù) 測值Y; (2)Y,DELTA=polyconf(p,x,S,alpha)求polyfit所得 的回歸多項式在x處的預(yù)測值Y及預(yù)測值的顯著性為1- alpha的置信區(qū)間Y DELTA;alpha缺省時為0.5.2022-3-731 例例 2 觀測物體降落的距離s 與時間t 的關(guān)系,得到數(shù)據(jù)如下表,求s關(guān)于 t 的回歸方程2ctbtas.t (s)1/302/303/304

21、/305/306/307/30s (cm)11.8615.6720.6026.6933.7141.9351.13t (s)8/309/3010/3011/3012/3013/3014/30s (cm)61.4972.9085.4499.08113.77129.54146.48法一法一 直接作二次多項式回歸:直接作二次多項式回歸: t=1/30:1/30:14/30; s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48; p,S=polyfit(t,s,2)To MATL

22、AB(liti21)1329. 98896.652946.4892tts得回歸模型為 :2022-3-732法二法二化為多元線性回歸:化為多元線性回歸:t=1/30:1/30:14/30;s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;T=ones(14,1) t (t.2);b,bint,r,rint,stats=regress(s,T);b,statsTo MATLAB(liti22)22946.4898896.651329. 9tts得回歸模型為 :Y=pol

23、yconf(p,t,S) plot(t,s,k+,t,Y,r)預(yù)測及作圖預(yù)測及作圖To MATLAB(liti23)2022-3-733(二)多元二項式回歸(二)多元二項式回歸命令:rstool(x,y,model, alpha)nm矩陣顯著性水平(缺省時為0.05)n維列向量由下列 4 個模型中選擇 1 個(用字符串輸入,缺省時為線性模型): linear(線性):mmxxy 110 purequadratic(純二次): njjjjmmxxxy12110 interaction(交叉): mkjkjjkmmxxxxy1110 quadratic(完全二次): mkjkjjkmmxxxxy,

24、1110 2022-3-734 例例3 設(shè)某商品的需求量與消費者的平均收入、商品價格的統(tǒng)計數(shù) 據(jù)如下,建立回歸模型,預(yù)測平均收入為1000、價格為6時 的商品需求量.需求量10075807050659010011060收入10006001200500300400130011001300300價格5766875439選擇純二次模型,即 2222211122110 xxxxy法一法一 直接用多元二項式回歸:x1=1000 600 1200 500 300 400 1300 1100 1300 300;x2=5 7 6 6 8 7 5 4 3 9;y=100 75 80 70 50 65 90 10

25、0 110 60;x=x1 x2; rstool(x,y,purequadratic)2022-3-735 在畫面左下方的下拉式菜單中選”all”, 則beta、rmse和residuals都傳送到Matlab工作區(qū)中.在左邊圖形下方的方框中輸入1000,右邊圖形下方的方框中輸入6。 則畫面左邊的“Predicted Y”下方的數(shù)據(jù)變?yōu)?8.47981,即預(yù)測出平均收入為1000、價格為6時的商品需求量為88.4791.2022-3-736在Matlab工作區(qū)中輸入命令: beta, rmse得結(jié)果:beta = 110.5313 0.1464 -26.5709 -0.0001 1.8475

26、rmse = 4.5362故回歸模型為:2221218475. 10001. 05709.261464. 05313.110 xxxxy剩余標(biāo)準(zhǔn)差為 4.5362, 說明此回歸模型的顯著性較好.To MATLAB(liti31)2022-3-737X=ones(10,1) x1 x2 (x1.2) (x2.2);b,bint,r,rint,stats=regress(y,X);b,stats結(jié)果為: b = 110.5313 0.1464 -26.5709 -0.0001 1.8475 stats = 0.9702 40.6656 0.0005法二法二To MATLAB(liti32)返回返回

27、 2222211122110 xxxxy將 化為多元線性回歸:2022-3-738非線性回非線性回 歸歸 (1)確定回歸系數(shù)的命令: beta,r,J=nlinfit(x,y,model, beta0)(2)非線性回歸命令:nlintool(x,y,model, beta0,alpha)1、回歸:、回歸:殘差Jacobian矩陣回歸系數(shù)的初值是事先用m-文件定義的非線性函數(shù)估計出的回歸系數(shù)輸入數(shù)據(jù)x、y分別為 矩陣和n維列向量,對一元非線性回歸,x為n維列向量。mn2、預(yù)測和預(yù)測誤差估計:、預(yù)測和預(yù)測誤差估計:Y,DELTA=nlpredci(model, x,beta,r,J)求nlinfi

28、t 或nlintool所得的回歸函數(shù)在x處的預(yù)測值Y及預(yù)測值的顯著性為1-alpha的置信區(qū)間Y DELTA.2022-3-739例例 4 對第一節(jié)例2,求解如下:1、對將要擬合的非線性模型 y=axbe/,建立 m-文件 volum.m 如下: function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x);2、輸入數(shù)據(jù): x=2:16; y=6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76; beta0=8 2;3、求回歸系數(shù): bet

29、a,r ,J=nlinfit(x,y,volum,beta0); beta得結(jié)果:beta = 11.6036 -1.0641即得回歸模型為:xey10641. 16036.11To MATLAB(liti41)2022-3-7404、預(yù)測及作圖: YY,delta=nlpredci(volum,x,beta,r ,J); plot(x,y,k+,x,YY,r)To MATLAB(liti42)2022-3-741逐逐 步步 回回 歸歸逐步回歸的命令是: stepwise(x,y,inmodel,alpha) 運行stepwise命令時產(chǎn)生三個圖形窗口:Stepwise Plot,Stepwi

30、se Table,Stepwise History. 在Stepwise Plot窗口,顯示出各項的回歸系數(shù)及其置信區(qū)間. Stepwise Table 窗口中列出了一個統(tǒng)計表,包括回歸系數(shù)及其置信區(qū)間,以及模型的統(tǒng)計量剩余標(biāo)準(zhǔn)差(RMSE)、相關(guān)系數(shù)(R-square)、F值、與F對應(yīng)的概率P.矩陣的列數(shù)的指標(biāo),給出初始模型中包括的子集(缺省時設(shè)定為全部自變量)顯著性水平(缺省時為0.05)自變量數(shù)據(jù), 階矩陣mn因變量數(shù)據(jù), 階矩陣1n2022-3-742例例6 水泥凝固時放出的熱量y與水泥中4種化學(xué)成分x1、x2、x3、 x4 有關(guān),今測得一組數(shù)據(jù)如下,試用逐步回歸法確定一個 線性模 型

31、. 序號12345678910111213x17111117113122111110 x226295631525571315447406668x3615886917221842398x46052204733226442226341212y78.574.3104.387.695.9109.2102.772.593.1115.983.8113.3109.41、數(shù)據(jù)輸入:、數(shù)據(jù)輸入:x1=7 1 11 11 7 11 3 1 2 21 1 11 10;x2=26 29 56 31 52 55 71 31 54 47 40 66 68;x3=6 15 8 8 6 9 17 22 18 4 23 9 8

32、;x4=60 52 20 47 33 22 6 44 22 26 34 12 12;y=78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4;x=x1 x2 x3 x4;2022-3-7432、逐步回歸:、逐步回歸:(1)先在初始模型中取全部自變量:)先在初始模型中取全部自變量: stepwise(x,y)得圖Stepwise Plot 和表Stepwise Table圖圖Stepwise Plot中四條直線都是虛中四條直線都是虛線,說明模型的顯著性不好線,說明模型的顯著性不好從表從表Stepwise Ta

33、ble中看出變中看出變量量x3和和x4的顯著性最差的顯著性最差.2022-3-744(2)在圖)在圖Stepwise Plot中點擊直線中點擊直線3和直線和直線4,移去變量,移去變量x3和和x4移去變量移去變量x3和和x4后模型具有顯著性后模型具有顯著性. 雖然剩余標(biāo)準(zhǔn)差(雖然剩余標(biāo)準(zhǔn)差(RMSE)沒)沒有太大的變化,但是統(tǒng)計量有太大的變化,但是統(tǒng)計量F的的值明顯增大,因此新的回歸模型值明顯增大,因此新的回歸模型更好更好.To MATLAB(liti51)2022-3-745(3)對變量)對變量y和和x1、x2作線性回歸:作線性回歸: X=ones(13,1) x1 x2; b=regress(y,X)得結(jié)果:b = 52.5773 1.4683 0.6623故最終模型為:y=52.5773+1.4683x1+0.6623x2To MATLAB(liti52)返回返回2022-3-7461、考察溫度x對產(chǎn)量y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論