地球流體動(dòng)力學(xué)復(fù)習(xí)總結(jié)材料_第1頁(yè)
地球流體動(dòng)力學(xué)復(fù)習(xí)總結(jié)材料_第2頁(yè)
地球流體動(dòng)力學(xué)復(fù)習(xí)總結(jié)材料_第3頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、主要概念:位勢(shì)渦度及無(wú)粘淺水流體的位勢(shì)渦度守恒定律位勢(shì)渦度:在旋轉(zhuǎn)流體中,流體運(yùn)動(dòng)時(shí)存在著一個(gè)保守性或守恒性的較強(qiáng)的組合物理量,稱(chēng)、工2為位勢(shì)渦度,且定義為(一)。位勢(shì)渦度的引入有兩種方法:A.可以從渦度方程出發(fā)渦度方程:aUdt影響渦度變化的因素可概括為:渦管的傾斜效應(yīng),渦管的伸縮效應(yīng),斜壓性以及摩擦作用。位勢(shì)渦度方程:d()dt二一(一)1. 因此,當(dāng)滿(mǎn)足以下三個(gè)條件時(shí):0摩擦可忽略是守恒量,0僅是,p的函數(shù),(P)0,或流體是正壓的則有!()0dtErtel渦旋定理(位渦守恒定理),位渦是(工)淺水中引入守恒量zhBH則kA)HH故淺水位渦守恒分(一0B.從淺水方程出發(fā),按上述方法推導(dǎo)也

2、可得出淺水位渦守恒。2.地轉(zhuǎn)風(fēng)和熱成風(fēng)地轉(zhuǎn)風(fēng):在大尺度旋轉(zhuǎn)流體運(yùn)動(dòng)中,其Rossby數(shù)的量級(jí)0(&)<101,在旋轉(zhuǎn)流體水平運(yùn)動(dòng)過(guò)程中若略去0(101)以上的量,流體則在科氏力和壓強(qiáng)梯度力的作用下達(dá)到平衡,此時(shí)的運(yùn)動(dòng)即為地轉(zhuǎn)運(yùn)動(dòng),此時(shí)的風(fēng)為地轉(zhuǎn)風(fēng)。風(fēng)沿等壓線的方向,在北半球高壓在右。熱成風(fēng):地轉(zhuǎn)風(fēng)隨高度的變化或?yàn)閮蓚€(gè)等壓面之間地轉(zhuǎn)風(fēng)的差vgRPfpTk3. T7u00V00又:,熱成風(fēng)zyzxTaylor-proudman定理在均質(zhì)或正壓旋轉(zhuǎn)流體中,流體準(zhǔn)定常和緩慢的運(yùn)動(dòng),其速度在沿的方向上將不改變。也就是說(shuō),均質(zhì)或正壓旋轉(zhuǎn)流體,準(zhǔn)定常和緩慢的運(yùn)動(dòng),其速度將獨(dú)立于旋轉(zhuǎn)軸的方向,即

3、運(yùn)動(dòng)將趨于兩維化。地球上流體大尺度運(yùn)動(dòng)大尺度運(yùn)動(dòng)的定義:R02LfL物理意義:流體相對(duì)運(yùn)動(dòng)的時(shí)間尺度大于地球自轉(zhuǎn)周期,流體在其運(yùn)動(dòng)的時(shí)間尺度幾乎感不到地球的自轉(zhuǎn)。也就是說(shuō),大尺度大氣與海洋運(yùn)動(dòng)正是他們相對(duì)于地球運(yùn)動(dòng)的一個(gè)小偏差。慣性力/科氏力旋轉(zhuǎn)時(shí)間尺度/平流時(shí)間尺度相對(duì)渦度/牽連渦度相對(duì)速度/牽連速度三1Rossby數(shù)反映了各種動(dòng)力學(xué)特征量與其相應(yīng)旋轉(zhuǎn)作用的比較。4. Brunt-Vaisala頻率地球流體是具有層結(jié)結(jié)構(gòu)的層結(jié)流體。由于受擾抬升或下降的流體元在上升或下降時(shí),其密度按一定的規(guī)律隨高度變化,而四周環(huán)境流體的密度是按層結(jié)分布隨高度變化的。因此,流體元絕熱地位移到新高度的時(shí)候,這一流

4、體元本身的密度與環(huán)境密度差異將促使其產(chǎn)生振1Z2湯您動(dòng),又稱(chēng)為浮力振湯,其頻率為N,稱(chēng)作Brunt-Vasala頻率。其中,z為z高度坐標(biāo),0是位溫。Brunt-Vasala頻率為流體層結(jié)穩(wěn)定或靜力穩(wěn)定的穩(wěn)定度判據(jù)。d/dz0時(shí),層結(jié)是穩(wěn)定的;當(dāng)d4z0時(shí),層結(jié)是不穩(wěn)定的。對(duì)于海洋,流體元在小位移中所受的壓縮性影響可以忽略,其表達(dá)式可簡(jiǎn)化為當(dāng)/z0時(shí)為穩(wěn)定層結(jié),當(dāng)/z0時(shí),為不穩(wěn)定層結(jié)。6.均質(zhì)流體和層結(jié)流體(三種情況下)的準(zhǔn)地轉(zhuǎn)位勢(shì)渦度方程均質(zhì)流體的準(zhǔn)地轉(zhuǎn)渦度方程:土dt0V0一UiV1)y層結(jié)流體的準(zhǔn)地轉(zhuǎn)位勢(shì)渦度方程:(dty)(sWi)z大氣中天氣尺度運(yùn)動(dòng)的準(zhǔn)地轉(zhuǎn)位渦方程:d。dt)在無(wú)

5、加熱時(shí),準(zhǔn)地轉(zhuǎn)渦度方程為:d0dt)相應(yīng)的流函數(shù)形式位渦方程:海洋中天氣尺度的準(zhǔn)地轉(zhuǎn)位渦方程:xsz)yd°dtW1S-(zs二一(Tzs無(wú)加熱yx無(wú)加熱1-()y0zszRossby變形半徑r攵三巳是一個(gè)與波動(dòng)本身性質(zhì)無(wú)關(guān)、只與流體深度和地球旋轉(zhuǎn)有關(guān)的特征參數(shù)。f2(1)Poincare波:在旋轉(zhuǎn)特征周期21這一時(shí)間尺度上,波速為c0v'gH?的淺水重力波傳播的特征距離。Kelvin波:在邊界處,波振幅取最大值,從邊界向區(qū)過(guò)渡,振幅呈指數(shù)減小。振幅衰減的e-折尺度為R殳互??蓪ossby變形半徑理解為一個(gè)特征距離尺度,在這個(gè)距f2離尺度上,科氏力使自由面變形的趨勢(shì)與重力(

6、或壓強(qiáng)梯度力)使自由面復(fù)原的趨勢(shì)相平衡。準(zhǔn)地轉(zhuǎn)位渦守恒方程:(0FoB0dt準(zhǔn)地轉(zhuǎn)近似下的無(wú)量綱的位渦為:g0F0B20和F0兩項(xiàng)比較看F(L)2:RF1,的變化可以忽略,比Rossby半徑小的水平尺度運(yùn)動(dòng)可視為剛蓋運(yùn)動(dòng)(自由面起伏對(duì)大尺度運(yùn)動(dòng)的高度貢獻(xiàn)不大)。F1,2項(xiàng)可忽略,比Rossby半徑大的水平尺度運(yùn)動(dòng)o(1)量級(jí)上的相對(duì)渦度是次要的。因此,Rossby波半徑又可解釋為這樣一個(gè)特征距離尺度,在此距離上,相對(duì)渦度和表面高度起伏對(duì)位勢(shì)渦度有同等重要的貢獻(xiàn)。Rossby數(shù),Ekman數(shù),雷諾數(shù),F(xiàn)roude數(shù)(旋轉(zhuǎn)/層結(jié))R。UU2LfL慣性力/科氏力旋轉(zhuǎn)時(shí)間尺度/平流時(shí)間尺度相對(duì)渦度/牽

7、連渦度相對(duì)速度/牽連速度三1Rossby數(shù)反映了各種動(dòng)力學(xué)特征量與其相應(yīng)旋轉(zhuǎn)作用的比較。,表示分子粘性力和科氏力fL之比的無(wú)量綱參數(shù)。2U/LEkman數(shù):EfU垂直Ekman數(shù):EV2性二2fD2(Re)V水平Ekman數(shù):EH2國(guó)2fL22(Re)H雷諾數(shù):ReU/L,Ah為垂直湍流粘性系數(shù)。AH(Re)vDU2D為垂直渦粘性的雷諾數(shù);KvL(Re)H史為水平渦粘性的雷諾數(shù)。KvFroude數(shù)(旋轉(zhuǎn)):定義fULUf2L2fLgf2L2gD(R)2F是表征運(yùn)動(dòng)的水平尺度L相對(duì)于Rossby變形半徑R的大小的一個(gè)參數(shù)。層結(jié):s.嗔fo2L2NsD(g'D)2:Ld為Rossby變形半

8、徑。其f0中,g為簡(jiǎn)化重力(gsz*在簡(jiǎn)化條件1下,由線性化準(zhǔn)地轉(zhuǎn)位渦守恒方程:2F一0和波動(dòng)的表達(dá)式A(x,y,t)cos(kxlyt)txk可以得到精確到最低階的Rossby波頻散關(guān)系:1f以及反映振幅變化的方程:以A2A0tKFxKFy由此可見(jiàn)振幅為的傳播速度:cgx(k2l2F)ckl2Cgy2K2FkgyK2FCgCgxiCgyj,以速度Ca移動(dòng)的觀察者(因?yàn)間dAdt0)所看到的振幅為常數(shù),將此速度定義為群速度:cgkKk(kc)cKkCcKkC(Cgc時(shí)為頻散波)K10.共振三波組對(duì)于非線性準(zhǔn)地轉(zhuǎn)位渦方程(無(wú)量綱):22()(xyyx令t*0URossby波的特征周期遠(yuǎn)遠(yuǎn)地小于質(zhì)

9、點(diǎn)運(yùn)動(dòng)的平流時(shí)間尺度。(oL)1It(t為新的無(wú)量綱時(shí)間變量)U-._、_.,.11時(shí),t為無(wú)重綱快變重,其特征值(oL)要小些t為無(wú)量綱慢變量,其特征值(j)要大些無(wú)量綱位渦方程則要求表示為:2_122-(F)()()txyxxy1顯然非線性項(xiàng)的量綱為:,是否忽略非線性作用的條件是由決定。一、,f,1,1-1(x,y,t)1、2(x,y,t).個(gè)線性方程求解方法是利用對(duì)小參數(shù)()的攝動(dòng)展開(kāi)。A,、,、(x,y,t,)0(x,y,t)得:(1)(0七(其解可表示為平面波的線性疊加ajcosjjjkjxUjtj,:略(2。500-2。504)此式說(shuō)明了第m個(gè)波和第n個(gè)波相互作用產(chǎn)生了關(guān)于1方程的

10、強(qiáng)迫項(xiàng),此強(qiáng)迫項(xiàng)也是一個(gè)周期作用,其波矢為:KmnKmKn;頻率Wmnmn通過(guò)數(shù)學(xué)處理,可得強(qiáng)迫振蕩1的振幅:A1mnamanB(Km,Kn)(KmnF)(mnmn)明確:mn是方程的固有頻率;mn是強(qiáng)迫項(xiàng)的頻率;Kmn是強(qiáng)迫項(xiàng)的波矢1B(km,kn)-(KmK)Z(KnKm)4這意味著在強(qiáng)迫作用下出現(xiàn)了第三種波動(dòng),且滿(mǎn)足:mnkm。(kmkn)2(lmln)2Fmnkm燈,2,2l,2,2_kmlmFknlnFmn與mn無(wú)限接近時(shí),會(huì)出現(xiàn)共振。,一.1非線性I可題的解(精確到-):0()aimnC0S(mn)0咐海(mn)何時(shí)才會(huì)發(fā)生共振呢?第三個(gè)波相則要求:kjkmkn0,ljlmln0,

11、j(kj,'j)m)ng,ln)。即:三個(gè)波矢之和為零。第三個(gè)條件可寫(xiě)為:km22kmlmFkn22knlnFkj我們稱(chēng)滿(mǎn)足上述條件的波矢構(gòu)成共振三波組。11.f平面近似,平面近似f平面近似:運(yùn)動(dòng)的經(jīng)向水平尺度遠(yuǎn)小于地球半徑時(shí)理,稱(chēng)為f平面近似。上1,取ff。,把f作為常數(shù)處a,.*、.平面近似:ff°°y,考慮了由于地球的球面性引起的f變化的線性部分,f的變化對(duì)f°而言是個(gè)小量,但與相對(duì)渦度比較已不能忽略。12.球面效應(yīng)與地形效應(yīng)等價(jià)性(P81)在6平面模式中,淺水位渦為:t一、*、其中,°yf°hB/D為環(huán)境位渦的變化部分??梢?jiàn),科

12、氏參數(shù)隨緯度的變化°y與q.*.地形的變化f0hB/D在位渦動(dòng)力學(xué)中具有精確的動(dòng)力學(xué)等價(jià)性。球面效應(yīng)與地形效應(yīng)動(dòng)力學(xué)等價(jià)性相當(dāng)于13.Rossby駐波加上緯向流擾動(dòng)后,流函數(shù)為:Uy(x,y,t),I?為無(wú)量綱數(shù)I?代入準(zhǔn)地轉(zhuǎn)無(wú)界波動(dòng)的位渦方程,得:匚V2FtxxFl?J(,2F)0取解的形式為:文檔大全Acos(kxlyt)(無(wú)界平面波)當(dāng)I?2Kvf該解要成為方程的精確非零解應(yīng)滿(mǎn)足頻散關(guān)系:Qy(UK2)cxi?-2-從此頻散關(guān)系我們可以看出:(1)若0當(dāng)1?1西風(fēng)基本流時(shí)FI?,當(dāng)1?K20若K2,Cx0較快波向東傳播;若K2,Cx<0較慢波何西傳播;若K2,Cx0駐波,

13、Rossby駐波波長(zhǎng)為*LU122()201東風(fēng)基本流時(shí),對(duì)于任何波動(dòng)都是向西傳播,不可能出現(xiàn)駐波??傊?,穩(wěn)定的Rossby駐波只有在I?與同號(hào)時(shí),才會(huì)在無(wú)界區(qū)域出現(xiàn),而當(dāng)U?與反號(hào)時(shí),駐波只能在有界的區(qū)域即K20時(shí)才會(huì)出現(xiàn)。旋轉(zhuǎn)減弱時(shí)間。旋轉(zhuǎn)流體受擾動(dòng)后,如去掉產(chǎn)生擾動(dòng)的外力,則流體運(yùn)動(dòng)要調(diào)整到地轉(zhuǎn)平衡。延伸到下墊面附近的流體因受到摩擦力的作用在其附近形成Ekman層,能聯(lián)將從摩擦不起作用的區(qū)域流入Ekman層被摩擦消耗掉,流體運(yùn)動(dòng)在下墊面摩擦的作用下減弱,最終達(dá)到一種靜止?fàn)顟B(tài),稱(chēng)為"旋轉(zhuǎn)減弱”,把摩擦引起的渦度隨時(shí)間的衰減的時(shí)間尺度稱(chēng)為"旋轉(zhuǎn)減弱時(shí)間”。旋轉(zhuǎn)衰減的機(jī)制(

14、1)從相對(duì)渦度方面考慮:當(dāng)正渦度存在時(shí),下Ekman層將把流體向上抽吸到低壓,上Ekman層則向下抽吸,二者聯(lián)合效應(yīng)使渦管以r。的速度被壓縮。相對(duì)渦度隨時(shí)間減小。反之亦然。從能量角度:Ekman抽吸作用,使區(qū)低壓中心的流體向外流動(dòng),必定克服壓強(qiáng)梯度力?2做的功,消耗能量,此能量的消耗率為:W<2/f轉(zhuǎn)化為Ekman層的動(dòng)能,2,又進(jìn)而轉(zhuǎn)化為湍流動(dòng)能。Sverdrup關(guān)系、,一w、Sverdrup關(guān)系:vf通過(guò)仃星渦度f(wàn)拉伸和在仃星渦度梯度方向的經(jīng)向您動(dòng)構(gòu)成z的渦度平衡,為對(duì)混合層下的流體元才有效的局地微分平衡關(guān)系。Sverdrup平衡:v0kcurl,由海表的風(fēng)應(yīng)力旋度確定流體的經(jīng)向速度

15、,適用于區(qū)。14. Munklayer,Stommellayer摩擦附屬層,慣性邊界層Ekman上升流(1)風(fēng)吹過(guò)海洋產(chǎn)生Ekman漂流,漂流與風(fēng)之間有一夾角。根據(jù)一個(gè)簡(jiǎn)單的理論知此夾角為90(北半球向右)。因此當(dāng)風(fēng)沿岸界吹的時(shí)候,產(chǎn)生的Ekman漂流方向不是向岸,便是離岸,岸界作為障礙存在。北(南)半球岸界在左(右)側(cè)時(shí),沿岸吹的風(fēng)產(chǎn)生離岸流。此時(shí)上層水減少,壓力降低,強(qiáng)迫低層的水向上移動(dòng)以補(bǔ)充離岸流造成的空缺。這種現(xiàn)象稱(chēng)為沿岸上升流。(2)沿赤道的上升流,沿赤道,穩(wěn)定的信風(fēng)總是從東向西吹。在赤道以北,Ekman漂流向右,或者說(shuō)離開(kāi)赤道;而在南側(cè),它偏向左,也是離開(kāi)赤道。沿赤道必然發(fā)生水平輻

16、散,質(zhì)量守恒要求上升流。(3)氣旋中心會(huì)出現(xiàn)Ekman上升流。(4)在高緯,上升運(yùn)動(dòng)通常發(fā)生在冰邊緣,稱(chēng)之為冰區(qū)邊緣帶。均勻風(fēng)在冰面和開(kāi)闊水域上有不同的應(yīng)力作用;緊接著移動(dòng)的冰對(duì)其下的海洋有應(yīng)力作用。對(duì)風(fēng)與冰邊緣之間特定的角度,流輻散,發(fā)生上升流以補(bǔ)償水平流輻散。方法(掌握)1.尺度分析法合理的估計(jì)出一個(gè)函數(shù),一個(gè)物理作用在問(wèn)題中量級(jí)的大小,根據(jù)每個(gè)作用的相對(duì)大小將一些小項(xiàng)略去,保留重要性較大的項(xiàng)。這樣可以使主要因子篩選出來(lái),使復(fù)雜的問(wèn)題得到簡(jiǎn)化。4. 2.小擾動(dòng)線性化法平面波求解方法邊界層中坐標(biāo)變換方法Rossby波能量傳播圖作圖法(通過(guò)波矢量來(lái)表示群速度的一種幾何方法)一一22k原理:kl

17、F02若:k0(正數(shù))0,k2l22F242對(duì)于某一頻率,波矢必須位于k-l平面的一個(gè)圓上,其圓心坐標(biāo)是(,0),半徑是22F)12。4當(dāng),F(xiàn)一定時(shí),圓心位置與半徑完全由頻率決定。平均能通量矢量的方向可以用OW的方向來(lái)表示而對(duì)于振幅和頻率都相同的Rossby波,能通量也相同。波矢端落在apB上的波向右傳播能量(波數(shù)大,短波)波矢端落在AOB上的波向左傳播能量(波數(shù)小,長(zhǎng)波)(P122)利用能量傳播圖表示,反射平面波的關(guān)系的步驟:<1>根據(jù)已知x-y平面上入射波的能量方向Si和i角在k-l圖上確定Wi點(diǎn)。<2>連接原點(diǎn)和Wi點(diǎn)確定入射波對(duì)應(yīng)的波矢量ki<3>根

18、據(jù)入射角=反射角,在k-l圖上確定OWr。<4>連接原點(diǎn)與Wr得到反射波波矢量和平均能通量S<5>將kr和sr平行地繪制x-y平面圖上,同時(shí)繪出cr和相平面(等相位線),等位相線之間間距與k呈反比。主要容:1.淺水方程的導(dǎo)出(尺度分析法)步驟:1)確定基本量:T,L,U,D2)利用質(zhì)量守恒方程:0,進(jìn)行尺度分析,xyzD、得到垂直速度尺度應(yīng)受到的約束條件:Wo(U)L故Wo(U),事實(shí)上W遠(yuǎn)小于o(U)。3) 估計(jì)動(dòng)量方程各項(xiàng)以簡(jiǎn)化動(dòng)量方程。其P是可變壓力場(chǎng)尺度,為了保持水平壓力梯度項(xiàng)在動(dòng)量方程中的作用,根據(jù)尺度分析,應(yīng)有:LP11亍,11,化匾*WUWP,4)根據(jù)對(duì)垂

19、直速度變化方程的尺度分析,一,max故:TLDodWdtWT,WULmaxDW1tUg,1""P)PUL1,UfRx1,UL,f】maxZDILILU討論:若Ro(1)或更大,上式右邊量級(jí)為.淺水中的平面波及頻散特性和傳播特性(小擾動(dòng)線性化法)fLdW故dt若R1,上式右邊量級(jí)為2R。故精確到o(2)量級(jí)時(shí),大尺度大氣海洋運(yùn)動(dòng)中致很小可忽略不計(jì)。由于垂直運(yùn)動(dòng)方程中不可能只有一個(gè)大項(xiàng),dt和都可忽略不計(jì)。2),若z=h,P=Po,Z故總壓力:go(zPhPh、,Pg(hz)P0g,g,h為自由表面的局度。xxyy得到水平壓力梯度不隨z變化。水平運(yùn)動(dòng)方程可簡(jiǎn)化為淺水方程:fvf

20、u利用上下邊界條件,并對(duì)連續(xù)方程進(jìn)行垂直積分,則可將連續(xù)方程寫(xiě)成:h(hhB)u)(hhB)v)0txy這就是大氣海洋中淺水運(yùn)動(dòng)的動(dòng)力學(xué)方程組。222一基本萬(wàn)程:-【(f)&)gfJ(H0,)0平面波:Reoei(kxly以Re°ei()(一)Poincare波:無(wú)水平邊界,H0const2描述方程簡(jiǎn)化為:一(rf2)(c0)0(齊次方程)tt取其解的形式為:Re0ei(kxlydRe0ei()將解代入描述方程求其頻散關(guān)系(重點(diǎn))。可得出,f2c2K212,f0時(shí),c°K,cc°可以得到以下結(jié)論:(討論)1)無(wú)限平面等深波是二列方向相反,頻率大小相同的波動(dòng)

21、。2)旋轉(zhuǎn)(地轉(zhuǎn))使波速增大。頻率大于f,周期小于地轉(zhuǎn)周期的一半。即頻率大大地超過(guò)大尺度大氣海洋緩慢地運(yùn)動(dòng)頻率。3)()21R2K2(其中R為Rossby變形半徑=C0/f)短波RK1,淺水重力波,一RK;f長(zhǎng)波RK1,f,慣性振蕩。4)質(zhì)點(diǎn)運(yùn)動(dòng)的水平速度矢量的矢端隨時(shí)間描繪出橢圓的軌跡。222220Murc2f2H02因?yàn)橐?,故平行K方向的最大速度大于垂直于方向的最大速度。流體的運(yùn)動(dòng)處于非地轉(zhuǎn)f平衡狀態(tài)。主要發(fā)生在沿著壓力梯度的方向。5)位渦守恒線性化形式為:波峰處產(chǎn)生正的相對(duì)渦度,波谷處產(chǎn)生負(fù)的相對(duì)渦度,自由面時(shí)升時(shí)降。(二)Kelvin波:無(wú)限長(zhǎng)渠道,H0const描述方程為:&quo

22、t;)(C2)0邊界條件:受邊界條件影響,其解應(yīng)取為:求其頻散關(guān)系(將解分別代入描述方程和邊界條件,由描述方程得出關(guān)于振幅通解,再代入到邊界條件中,使其有非零解的充要條件即是頻散關(guān)系):2.2222(f)(kc)sinL0分三種情況討論上式:(1)sinL0,有:2f22Cok2L2此波特點(diǎn)是類(lèi)似于無(wú)限平面等深淺水中的平面波,亦是向正,反兩個(gè)方向傳播的,不同之處在于y方向的波數(shù)只是一的整數(shù)倍,不可能任意取值,稱(chēng)為Poincare波。c0k時(shí)特征方程也被滿(mǎn)足,此解為一個(gè)與旋轉(zhuǎn)參數(shù)f無(wú)關(guān)沿著x方向傳播的kelvin波。求解為:2f22k2f22,cifcfyc0e0cos(k(xc0t)ec0co

23、s(k(xc0t)H0v0特點(diǎn):1)在波動(dòng)傳播的x方向滿(mǎn)足地轉(zhuǎn)平衡,整個(gè)波動(dòng)是非地轉(zhuǎn)的。2)y方向上只有波動(dòng)振幅的變化且隨y的變化呈指數(shù)衰減,在y方向上存在一個(gè)與波動(dòng)場(chǎng)無(wú)c0.關(guān)的特征尺度R(Rossby變形半徑),也是e-foldingscaleforthecross-channel。波局在觀測(cè)者的右方最tWj。3)波動(dòng)沿正負(fù)x方向傳播,波峰線與y軸平行。4)kelvin波只能在有界域出現(xiàn)。5)kelvin波是Poincare波的極限形式。(3)f慣性振蕩,為(2)中的一種,此時(shí)已不能根據(jù)的表達(dá)式來(lái)得到u,v的解。(三)Rossby波:f-平面的渠道模式,H0D0(1亍),s1為地形坡度。2

24、描述方程:、(f2)(co)gfJ(H°,)00,y0,L2邊界條件:fytx波動(dòng)機(jī)制分析(3)設(shè)其解:_,、i(kxRe(y)e(°,與Kelvin波相同。欲使一有非零解(欲使A,B不同時(shí)為零)則必有:(2f2)k2c222fkc0.r°smL0即(2f2)(2k2c2)sinL0(與平底的有界域波動(dòng)頻散關(guān)系的形式一樣,但的值不同)討論:c°kKelvin波說(shuō)明:有界是Kelvin波的存在條件,sinL0時(shí),n,nL”小”的地形坡度并不影響其存在。1.2.3.,略去的。("2)項(xiàng),故有:fksc0Lc2(k2(三次代數(shù)方程)1快波第一類(lèi)則:f

25、2c2(k222L2,高頻的Poincare波基本上不受底邊界小坡度的影響。第二類(lèi)o(s)慢波(2可忽略不計(jì))k22nT,n1,2,.1R2地形Rossby波的頻率公式,此波是此方程有兩類(lèi)完全不同的解。f頻散波。波動(dòng)特性:(1)只有f,s均不為零時(shí)才存在地形Rossby波,即Rossby波是地形坡度與旋轉(zhuǎn)兩種因素聯(lián)合作用的產(chǎn)物,,才會(huì)產(chǎn)生Rossby波。因此地轉(zhuǎn)與地形坡度同時(shí)存在fs2(2)cx/(k2kL對(duì)于北半球f0,對(duì)于所有的k,位相傳播的方向是使的一個(gè)跟隨波峰一起前進(jìn)的觀測(cè)者看到淺流體在它的右方。對(duì)于南半球則相反。(3)max2L22(nf,故小坡度地形Rossby波是低頻波。(2)

26、高波數(shù)地形Rossby波與Poincare波以及Kelvin波相反,頻率隨波數(shù)增加而減小。注:通道中的Poincare波,Kelvin波和Rossby波的頻散關(guān)系圖P68。3.淺水準(zhǔn)地轉(zhuǎn)位渦方程的推導(dǎo),各項(xiàng)的物理意義(尺度分析,攝動(dòng)法)借助尺度分析的方法從淺水方程出發(fā),研究滿(mǎn)足(1)UfL1,小Rossby數(shù),(2)1TfT_.1,1,時(shí)間尺度遠(yuǎn)大于罕的您動(dòng)。N一hh_HH0(x,y)DhBD(1骨骨)D(1f昌從淺水方程出發(fā),實(shí)行無(wú)量綱化,引入特征量:N。方程IfULUf2l2Fvf2l2gDx(與Rgu、v)ygfL可寫(xiě)作:Tu,u,(utxT一vV(u一txvyuyhRhBhuvTF令t

27、F(u-早一T,正vx-個(gè)小量,y)ux(D將未知變量對(duì))v()1F0yDDxyWo設(shè)u(x,y,t,)u0(x,y,t)u1(x,y,t)2u2(x,y,t)(式中uo,ui,u2等與無(wú)關(guān))其他未知量也做類(lèi)似展開(kāi),代入方程。關(guān)于的同次藉項(xiàng)須分別平衡,對(duì)于兩個(gè)運(yùn)動(dòng)方程:對(duì)于0:V00,u0無(wú)法確定各未知量,地轉(zhuǎn)退化。1U0/U0U0-對(duì)于:(U0V0)VitxyxV0/V0V0(U0V0)UitxyF-0U0-0V0U0BV0(Uitxyxyx此式說(shuō)明:V1x-1)0y(1)非地轉(zhuǎn)速度Ui,Vi完全由于處于地轉(zhuǎn)平衡的運(yùn)動(dòng)U0和-0的加速度及壓力場(chǎng)與地轉(zhuǎn)平衡時(shí)的壓力場(chǎng)偏差產(chǎn)生的。(2) 非地轉(zhuǎn)運(yùn)

28、動(dòng)的水平散度不為零,由于(A)地轉(zhuǎn)運(yùn)動(dòng)自由面的起伏(B)底邊界起伏所造成的流體柱伸縮來(lái)平衡該散度。一級(jí)近似方程整理后:d0000UiVi、U0V0(),其中0V0U020dttxyxyxy物理意義是:相對(duì)速度的變率等于非地轉(zhuǎn)運(yùn)動(dòng)的輻合,其量級(jí)為0()在近似條件下,由于f,故低階近似中只有行星渦的擠壓才有相對(duì)渦度的變化。消去xd0dtF0B地轉(zhuǎn)位渦(g的貢獻(xiàn)取決于參數(shù)Jyx由相對(duì)渦度F的大小。B0為準(zhǔn)地轉(zhuǎn)位渦守恒方程。0、波高0和環(huán)境位渦b三部分組成。波高4.慣性邊界流的動(dòng)力學(xué)特點(diǎn)根據(jù)準(zhǔn)地轉(zhuǎn)位渦方程討論,若/I,局地變率遠(yuǎn)小于平均項(xiàng):(2FB)0xyyxJ(,g)。,等線與等g線相重合。物理意義

29、:相對(duì)渦度與環(huán)境渦度之和沿流線是守恒的,渦管的伸縮不會(huì)因自由面的變化而是因底邊界坡度的變化而變化。引入函數(shù):K()2B,一旦K()確定,0即可解出。(解橢圓方程)。若在均勻流的前方置一側(cè)壁(2故有yK()由于無(wú)窮遠(yuǎn)處是均勻定常流故x=0),HoD(1s-),LsfL廿上fLsb-ys()yy,其中s()-UU而yy。,K()y0,所以函數(shù)K()為了將非齊次方程22-(yy°)(x,y),則0。(yy°)變?yōu)辇R次方程,若令的邊界條件:x,0;故解的形式可能形如(yy°)代入方程后得到:(yy0)(1u(1y討論此解:(1) 很小時(shí)運(yùn)動(dòng)幾乎是無(wú)旋的。此結(jié)論可由y(1e

30、x)y1(2) 若較大運(yùn)動(dòng)是有旋的。(yy°)(1e戶(hù));vy1x0,1(u0)y(x)e''x)-慣性邊界流函數(shù)e'x),v廠(yy°)ex)x1廠x2xy得出(此時(shí)y0)2xvux.2ev;ye、;vdxyxy0y的變化(地形的變化)而線性增A.渦度隨離側(cè)邊界距離的x的增大而呈指數(shù)性衰減,大,底地形的坡度越陡,變化的越快。B.值越大,流體沿等深線運(yùn)動(dòng)的主導(dǎo)作用越大,流體元(即流體的的運(yùn)動(dòng)越是沿等深線的)偏轉(zhuǎn)的位置距邊界越近,邊界層厚度越薄。C.南北流速v隨y,的增大而增大,單位厚度由南北但總的輸送量為y此僅與地形有關(guān)。D.在靠近側(cè)邊界的狹窄區(qū)域里

31、,流體改變運(yùn)動(dòng)方向被引入沿側(cè)壁運(yùn)動(dòng)的路徑。這個(gè)區(qū)域?yàn)閼T性(無(wú)粘)邊界層,此厚度為Ekman層的動(dòng)力特性(1)Ekman厚度(eJ2)為e與U無(wú)關(guān)(與大尺度運(yùn)動(dòng)無(wú)關(guān)),僅由f及Kv決定(注意實(shí)際上Kv與大尺度運(yùn)動(dòng)有關(guān))。當(dāng)表示地球旋轉(zhuǎn)效應(yīng)的f趨于零時(shí),Ekman層的厚度趨于無(wú)窮。Ekman層是旋轉(zhuǎn)與粘性共同作用下流體運(yùn)動(dòng)的一個(gè)特殊的層。(2)水平速度的垂直切變?cè)斐尚行菧u旋傾斜引起渦度的變化,將與摩擦阻滯作用產(chǎn)生的渦度相平衡(摩擦作用產(chǎn)生的渦度勢(shì)必引起水平速度的垂直切變)。(3)摩擦作用破壞了地轉(zhuǎn)平衡,壓強(qiáng)梯度力對(duì)流體作功以維持消耗的動(dòng)能,動(dòng)。這是因?yàn)閤*后,側(cè)邊界對(duì)流的修正作用就減小到e1以下。

32、此層厚度:L)/DU“dH*(dy*E.在邊界流區(qū)域,盡管流速U可能很大。但是只要S為小量,仍為小量。能消耗率為:W(參考余志豪等p153)。為維持邊界條件不變,必須向大局地Rossby數(shù):U*/fUy二xe(sy)efL若其他條件不變,S變號(hào),深度隨y的增大而減小的情況下,則不存在慣性邊界流,而是產(chǎn)生一個(gè)定常的駐波,它在無(wú)窮遠(yuǎn)處對(duì)運(yùn)動(dòng)有反作用,波長(zhǎng)與有關(guān)。U1從:-'2中也可得慣性邊界流存在的條件是:5. f(dy*)/DdH0dyRossby波機(jī)制能量傳播及邊界反射的特性D(2Kvf)&為旋轉(zhuǎn)減弱時(shí)間尺度運(yùn)動(dòng)提供能量。(4)在無(wú)外界能源供給的條件下,地轉(zhuǎn)流將衰竭,其時(shí)間尺度

33、為2_KUD?w2W(5)地面速度為地轉(zhuǎn)速度左方450。(6)剛體表面施加于流體的總應(yīng)力:土U(ij)E且總的質(zhì)量通量MEiudzivdzeU(ij)E0oe2k總的質(zhì)量通量ME一k依賴(lài)于,這是由于邊界層作為一個(gè)整體,它只受氣壓梯度力,Ef科氏力和下邊界摩擦力這三個(gè)外力,而在大尺度為地轉(zhuǎn)運(yùn)動(dòng)的前提下,壓強(qiáng)梯度力恰于地轉(zhuǎn)速度所對(duì)應(yīng)的科氏力相平衡,因此地轉(zhuǎn)偏差所造成的質(zhì)量輸送ME僅與外摩擦力有關(guān),且垂直于在的右邊。這種地轉(zhuǎn)偏差所對(duì)應(yīng)的科氏力在ME的右邊與相平衡。5. 有摩擦準(zhǔn)地轉(zhuǎn)動(dòng)力學(xué)(區(qū),上,下邊界層區(qū))自由面上的Ekman層摩擦和地形對(duì)準(zhǔn)地轉(zhuǎn)位渦守恒的影響均質(zhì)大洋環(huán)流模式的推導(dǎo)及各項(xiàng)的物理意義將大洋分為三層(上表層為薄的Ekman層,中間為特征深度為D的區(qū),海底為傾斜底表面上的薄Ekman層),此模式的數(shù)學(xué)表達(dá)式為:(根據(jù)第三章結(jié)論):(4.1)其中f2sinf2cos0yro相應(yīng)下邊界:w*(x,y,hB)uhB(4.2)上邊界:w*(x,y,D)MEkcurl(4.3)其中為c外應(yīng)力。因?yàn)閰^(qū)均質(zhì),且滿(mǎn)足地轉(zhuǎn)關(guān)系,u,v,I與z無(wú)關(guān)。故對(duì)方程(4.1)垂直積分,并利用上,下邊界條件(DW膏V0AH2kCUrl(f)萼(4.4)就是均質(zhì)大洋環(huán)流的數(shù)學(xué)表達(dá)式(有量綱)。UhB(4.4)(1)尺度分析,無(wú)量綱化:(x,y)L(x,y),(u,v)U(u,v),tff。f0(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論