版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、7二次函數(shù)之面積專題(講義)一、知識點睛1.坐標(biāo)系中處理面積問題,要尋找并利用“”的線.兒何中處理面積問題的思路:、2.坐標(biāo)系中面積問題處理方法舉例:割補求面積(鉛垂法):SMPB=成湖轉(zhuǎn)化求面積:,里時=SMB。SAPB=al17若P、。在,招同側(cè)則PQ/AB若P、。在M異側(cè)則平分P。7二、精講精練1.如圖,拋物線經(jīng)過4(-1,0)、8(3,0)、C(0,3)三點.(1)求拋物線的解析式.(2)點M是直線BCh方拋物線上的點(不與3、C重合),過點肱作A/N/y軸交線段8C于點、N,若點M的橫坐標(biāo)為,請用含m的代數(shù)式表示的長.(3)在(2)的條件下,連接痣、AfC,是否存在點使四邊形。及1億
2、的面積最大?若存在,求出點M的坐標(biāo)及最大面積;若不存在,說明理由.72.如圖,拋物線y=-x2+2x+3與直線y=x+交于4、C兩點,其中C點坐標(biāo)為(2,t).(1)若P是拋物線上位于直線ACk方的一個動點,求.C面積的最大值.(2)在直線-C下方的拋物線上,是否存在點G,使得,皿=6?如果存在,求出點G的坐標(biāo);如果不存在,請說明理由.773.拋物線尸爐-2x-3與x軸交于人8兩點,與直線尸-沖交于點人和點C(2,-3)鬻七臂雅的黑點風(fēng)、以及另*為頂點的平行四邊形 g 的面:2)在(1)的條件下,若點”是x軸下方拋物線上的動點,請求出4PQM的最大面積及點M的坐標(biāo).、4PQM的面積最大時,4.
3、如圖,拋物線尸-/+2%+3與x軸交于4、8兩點,與y軸交于點C,對稱軸與拋物線交于點P,與直線8C交于點M,連接P8.(1)拋物線上是否存在異于點P的一點。,使0WS與RVS的面積相等?若存在,求出點。的坐標(biāo);若不存在,說明理由.(2)在第一象限對稱軸右側(cè)的拋物線上是否存在一點使與RVS的面積相等?若存在,求出點R的坐標(biāo);若不存在,說明理由.75.如圖,己知拋物線K+bx+c與x軸交于點A(1,0)和點8,與y軸交于點C(0,-3)(1)求拋物線的解析式;(2)如圖, 己知點H (0,-1) ,在拋物線上是否存在點G(點G在) ,SEHdGHA?若存在,求出點G的坐標(biāo);若不存在,請說明理由軸
4、的左側(cè)),使得7【參考答案】一、知識點睛1.橫平豎直2.公式、割補、轉(zhuǎn)化二、精講精練1.解:(1)y=-x2+2X+3(2).點M在拋物線上,(m,-nr+2m+3)由點3(3,0),C(0,3)可得直線3C解析式:)=-x+3:.N(m,-m+3).LMN=(-m2+2?+3)-(一z+3)=m+3m(3)過點C作CELMN 于點、E,直線交x軸于點尸,則S址CM=S、CMN+S址MN=LCEMN+BFMN22=!(CE+BF)MN=l OB MN2=?.3.(一麻+3,)3,9=nr+-m2219S 皿=_OB,OC=_蛔22c_3299_3(3丫63S四邊形OBMC=S庭CM+SsBOC
5、=??=j7H22222)8.0w;=,此時,Af(-,)28242.解:(1)過點尸作PELx軸,交年 C 于點 E,由拋物線y=-x2+2x+3得(-1,0),C(2,3)設(shè)P(m,m2+2m+3)(Tv?V2)則E3,w+l)LPE=-nr+2/+3 (m+1)=-m2+/+2/、2Swe=:3PE=;3(-麻+7+2)=-,一+亍當(dāng)_1c_271Jn,最大=VZo(2)過點G作GFx軸,交/C于點F,設(shè)G(w,-n2+2n+3)(w/17、02(-,)。3(-,:)(2)存在,坐標(biāo)為R(1+V2,2)理由:過點P作PHTMR 于點 H過點B作BIMR于點/連接PB交MR于點OSPMR=
6、Sf.BMR:.PH=BI易證PHO 絲/B: PCX=BO,丈:P(1,4)B(3,0).O(2,2)又 M(1,2):.MO:y=2得Iy=-x2+2x+3.xi=l+yflX2=1-/2(點R在第一象限,舍去):.R(I+A/2,2)5.(1)拋物線表達(dá)式為J=X2+2X-3(2)存在GHC和GH4有一公共邊GH,如果以GH為底,對應(yīng)的高相等,則SEHC=SEHA.i)如圖1,即必-2*一1=07當(dāng)點3、C在GH的同側(cè),ACGH時,SMHC=SEHA0),C(0,-3)直線AC的表達(dá)式為=3.x-3又.0(0,-1)直線GH的表達(dá)式為)=3xTy=3A-1y=x2+2x-3x=2或b=5(舍):.G(-1,4)如圖2,當(dāng)點/、C在GH的異側(cè),線段/C的中點在GH上時,SEHC=SEHA7%(1,0),C(0,-3).線段灰的中點P為#9乂方(0,-1)此時直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年店鋪增資擴股合同范本
- 2024建筑合同范文(中英版)
- 2024月嫂雇傭的合同模板
- 2024年度委托研究合同:新材料開發(fā)
- 2024廣告屏租賃合同范文
- 2024個人借款還款合同范本
- 聯(lián)合開辦分公司合同模板新
- 全面網(wǎng)絡(luò)服務(wù)合同
- 專業(yè)房屋維修合同范本收錄
- 安寧療護護理醫(yī)療醫(yī)護培訓(xùn)
- 云南小學(xué)地方課程二年級上冊動物王國教學(xué)設(shè)計
- 管轄權(quán)異議申請書電子版下載
- 學(xué)校校園欺凌師生訪談記錄表六篇
- 耳鼻喉科手術(shù)分級目錄2022
- 課后習(xí)題答案-電機與拖動-劉錦波
- 急混合細(xì)胞白血病
- GB/T 11836-2023混凝土和鋼筋混凝土排水管
- 煙花爆竹生產(chǎn)企業(yè)2023安全生產(chǎn)費用投入計劃和實施方案
- 第三章 繼承優(yōu)良傳統(tǒng) 弘揚中國精神
- 中國陰道炎診治課件
評論
0/150
提交評論