


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、WORD格式小學數(shù)學知識點大全第一章數(shù)和數(shù)的運算一、概念一整數(shù)1、整數(shù)的意義自然數(shù)和 0 都是整數(shù)。2、自然數(shù)我們在數(shù)物體的時候,用來表示物體個數(shù)的1, 2, 3叫做自然數(shù)。一個物體也沒有,用0 表示。 0 也是自然數(shù)。3、計數(shù)單位一個、十、百、千、萬、十萬、百萬、千萬、億都是計數(shù)單位。其中“一是計數(shù)的根本單位。10 個 1 是 10,10 個 10 是 100每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。4、數(shù)位計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。5、整數(shù)的讀法: 從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億或
2、“萬字。每一級末尾的0 都不讀出來,其它數(shù)位連續(xù)有幾個0 都只讀一個零。6、整數(shù)的寫法: 從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。7、一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬或“億作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。 準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。 例如把 1254300000 改寫成以萬做單位的數(shù)是 125430 萬;改寫成 以億做單位 的數(shù) 12.543 億。 近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用
3、一個近似數(shù)來表示。 例如: 1302490015 省略億后面的尾數(shù)是13億。 四舍五入法:求近似數(shù),看尾數(shù)最高位上的數(shù)是幾,比 5 小就舍去,是 5 或大于 5 舍去尾數(shù)向前一位進1。這種求近似數(shù)的方法就叫做四舍五入法。專業(yè)資料整理WORD格式1專業(yè)資料整理WORD格式8、整數(shù)大小的比較:位數(shù)多的那個數(shù)就大,如果位數(shù)一樣,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)一樣,就看下一位,哪一位上的數(shù)大那個數(shù)就大。以此類推。二小數(shù)1、小數(shù)的意義把整數(shù) 1 平均分成 10 份、 100 份、 1000 份 得到的十分之幾、百分之幾、千分之幾 可以用小數(shù)表示。如 1/10 記作 0.1,7/10
4、0 記作 0.07 。一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾一個小數(shù)由整數(shù)局部、小數(shù)局部和小數(shù)點局部組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)局部,小數(shù)點左邊的數(shù)叫做整數(shù)局部,小數(shù)點右邊的數(shù)叫做小數(shù)局部。小數(shù)點右邊第一位叫十分位,計數(shù)單位是十分之一0.1 ;第二位叫百分位,計數(shù)單位是百分之一( 0.01 小數(shù)局部最大的計數(shù)單位是十分之一,沒有最小的計數(shù)單位。小數(shù)局部有幾個數(shù)位,就叫做幾位小數(shù)。如 0.36 是兩位小數(shù), 3.066 是三位小數(shù)在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是 10。小數(shù)局部的最高分數(shù)單位“十分之一和整數(shù)局部的最低單位“一之間的進率也是
5、 10。2、小數(shù)的讀法: 讀小數(shù)的時候,整數(shù)局部按照整數(shù)的讀法讀,小數(shù)點讀作“點,小數(shù)局部從左向右順次讀出每一位數(shù)位上的數(shù)字。3、小數(shù)的寫法: 寫小數(shù)的時候,整數(shù)局部按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)局部順次寫出每一個數(shù)位上的數(shù)字。4、比較小數(shù)的大?。?先看它們的整數(shù)局部,整數(shù)局部大的那個數(shù)就大;整數(shù)局部一樣的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也一樣的,百分位上的數(shù)大的那個數(shù)就大5、小數(shù)的分類純小數(shù):整數(shù)局部是零的小數(shù),叫做純小數(shù)。例如:0.25、 0.368都是純小數(shù)。帶小數(shù):整數(shù)局部不是零的小數(shù),叫做帶小數(shù)。例如: 3.25、 5.26都是帶小數(shù)。有限小數(shù):小數(shù)局部的數(shù)
6、位是有限的小數(shù),叫做有限小數(shù)。例如: 41.7、 25.3、 0.23都是有限小數(shù)。無限小數(shù):小數(shù)局部的數(shù)位是無限的小數(shù),叫做無限小數(shù)。例如: 4.33 3.1415926 無限不循環(huán)小數(shù):一個數(shù)的小數(shù)局部,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。 例如:專業(yè)資料整理WORD格式2專業(yè)資料整理WORD格式 循環(huán)小數(shù):一個數(shù)的小數(shù)局部,有一個數(shù)字或者幾個數(shù)字依次不斷重復出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。例如: 3.555 0.0333 12.109109 一個循環(huán)小數(shù)的小數(shù)局部,依次不斷重復出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。例如: 3.99的循環(huán)節(jié)是“ 9 , 0.5454 的循環(huán)節(jié)是
7、“ 54 。 純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)局部第一位開場的, 叫做純循環(huán)小數(shù)。例如: 3.111 0.5656 混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)局部第一位開場的,叫做混循環(huán)小數(shù)。3.1222 0.03333寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)局部只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán) 節(jié)只有一個數(shù)字,就只在它的上面點一個點。三分數(shù)1、分數(shù)的意義把單位“ 1平均分成假設干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。在分數(shù)里,中間的橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表示把單位“1平均分成多少份;分數(shù)線下面的數(shù)叫做分子,表示有這樣的多少份。把單位“ 1平均分成假設干份
8、,表示其中的一份的數(shù),叫做分數(shù)單位。2、分數(shù)的讀法: 讀分數(shù)時,先讀分母再讀“分之然后讀分子,分子和分母按照整數(shù)的讀法來讀。3、分數(shù)的寫法: 先寫分數(shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。4、比較分數(shù)的大小 : 分母一樣的分數(shù),分子大的那個分數(shù)就大。 分子一樣的分數(shù),分母小的那個分數(shù)就大。 分母和分子都不同的分數(shù),通常是先通分,轉化成通分母的分數(shù),再比較大小。 如果被比較的分數(shù)是帶分數(shù),先要比較它們的整數(shù)局部,整數(shù)局部大的那個帶分數(shù)就大;如果整數(shù)局部一樣,再比較它們的分數(shù)局部,分數(shù)局部大的那個帶分數(shù)就大。5、分數(shù)的分類按照分子、分母和整數(shù)局部的不同情況,可以分成:真分數(shù)、假分數(shù)、帶分數(shù)
9、真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于1。假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或等于1。 帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。6、分數(shù)和除法的關系及分數(shù)的根本性質專業(yè)資料整理WORD格式3專業(yè)資料整理WORD格式 除法是一種運算,有運算符號;分數(shù)是一種數(shù)。因此,一般應表達為被除數(shù)相當于分子,而不能說成被除數(shù)就是分子。 由于分數(shù)和除法有密切的關系,根據(jù)除法中“商不變的性質可得出分數(shù)的根本性質。分數(shù)的分子和分母都乘以或者除以一樣的數(shù) 0 除外,分數(shù)的大小不變,這叫做分數(shù)的根本性質,它是約分和通分的依據(jù)。7、約分和通分 分子、分母是互
10、質數(shù)的分數(shù),叫做最簡分數(shù)。 把一個分數(shù)化成同它相等但分子、分母都比較小的分數(shù),叫做約分。約分的方法:用分子和分母的公約數(shù)1 除外去除分子、分母;通常要除到得出最簡分數(shù)為止。 把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。 通分的方法:先求出原來幾個分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。8、倒 數(shù)乘積是 1 的兩個數(shù)互為倒數(shù)。求一個數(shù) 0 除外的倒數(shù),只要把這個數(shù)的分子、分母調換位置。 1 的倒數(shù)是 1,0 沒有倒數(shù)四百分數(shù)1、百分數(shù)的意義表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù) , 也叫做百分率或百分比。 百分數(shù)通常用 "%"來表示
11、。百分號是表示百分數(shù)的符號。2、百分數(shù)的讀法: 讀百分數(shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。3、百分數(shù)的寫法: 百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分號“%來表示。4、百分數(shù)與折數(shù)、成數(shù)的互化:例如:三折就是 30,七五折就是75,成數(shù)就是十分之幾,如一成就是牐闖砂俜質褪"0%,那么六成五就是 65%。5、納稅和利息:稅率:應納稅額與各種收入的比率。利率:利息與本金的百分率。由銀行規(guī)定按年或按月計算。專業(yè)資料整理WORD格式4專業(yè)資料整理WORD格式利息的計算公式:利息 =本金×利率×時間6、百分數(shù)與分數(shù)的區(qū)別主要有以下三點
12、: 意義不同。百分數(shù)是“表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)。 它只能表示兩數(shù)之間的倍數(shù)關系,不能表示某一具體數(shù)量。如:可以說 1 米 是 5 米 的 20 ,不可以說“一段繩子長為 20米。因此,百分數(shù)后面不能帶單位名稱。分數(shù)是“把單位 1平均分成假設干份,表示這樣一份或幾份的數(shù) 。分數(shù)不僅 可以表示兩數(shù)之間的倍數(shù)關系,如:甲數(shù)是 3,乙數(shù)是 4,甲數(shù)是乙數(shù)的 ";還可以表示一定的數(shù)量,如:犌 恕 米等。 應用X圍不同。百分數(shù)在生產(chǎn)、工作和生活中,常用于調查、統(tǒng)計、分析與比較。而分數(shù)常常是在測量、計算中,得不到整數(shù)結果時使用。 書寫形式不同。百分數(shù)通常不寫成分數(shù)形式,而采用百分號“來
13、表示。如:百分之四十五,寫作:45;百分數(shù)的分母固定為 100,因此,不管百分數(shù) 的分子、分母之間有多少個公約數(shù), 都不約分;百分數(shù)的分子可以是自然數(shù),也可以是小數(shù)。而分數(shù)的分子只能是自然數(shù),它的表示形式有:真分數(shù)、假分數(shù)、帶分 數(shù),計算結果不是最簡分數(shù)的一般要通過約分化成最簡分數(shù),是假分數(shù)的要化成帶分數(shù)。7、數(shù)的互化小數(shù)化成分數(shù):原來有幾位小數(shù),就在 1 的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能約分的要約分。 分數(shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保存三位小數(shù)。一個最簡分數(shù),如果分母中除了 2 和 5 以外,不含有其他的質因
14、數(shù),這個分數(shù)就能化成有限小數(shù);如果分母中含有 2 和 5 以外的質因數(shù),這個分數(shù)就不能化成有限小數(shù)。 小數(shù)化成百分數(shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。 百分數(shù)化成小數(shù):把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)除不盡時,通常保存三位小數(shù)) ,再把小數(shù)化成百分數(shù)。 百分數(shù)化成小數(shù):先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。五數(shù)的整除1、整除的意義整數(shù) a 除以整數(shù) b(b 0 ,除得的商是整數(shù)而沒有余數(shù), 我們就說 a 能被 b 整除,或者說 b 能整除 a 。除盡的意義甲數(shù)除以乙數(shù),所得的商是整數(shù)或有限小數(shù)而余數(shù)也為0
15、 時,我們就說甲數(shù)能被乙數(shù)除盡,專業(yè)資料整理WORD格式5專業(yè)資料整理WORD格式或者說乙數(shù)能除盡甲數(shù)這里的甲數(shù)、乙數(shù)可以是自然數(shù),也可以是小數(shù)乙數(shù)不能為 0。2、約數(shù)和倍數(shù)如果數(shù) a 能被數(shù) bb 0 整除, a 就叫做 b 的倍數(shù), b 就叫做 a 的約數(shù)或 a 的因數(shù)。倍數(shù)和約數(shù)是相互依存的。一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的約數(shù)是它本身。 一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。3、奇數(shù)和偶數(shù)自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。能被 2 整除的數(shù)叫做偶數(shù)。 0 也是偶數(shù)。不能被 2 整除的數(shù)叫做奇數(shù)。 奇數(shù)和偶數(shù)的運算性質: 相
16、鄰兩個自然數(shù)之和是奇數(shù),之積是偶數(shù)。奇數(shù) +奇數(shù) =偶數(shù),奇數(shù) +偶數(shù) =奇數(shù),偶數(shù) +偶數(shù) =偶數(shù);奇數(shù) - 奇數(shù) =偶數(shù),奇數(shù) - 偶數(shù) =奇數(shù),偶數(shù) - 奇數(shù) =奇數(shù),偶數(shù) - 偶數(shù) =偶數(shù);奇數(shù)×奇數(shù) =奇數(shù),奇數(shù)×偶數(shù) =偶數(shù),偶數(shù)×偶數(shù)=偶數(shù)。4、整除的特征個位上是 0、2、4、6、8 的數(shù),都能被 2 整除。個位上是 0 或 5 的數(shù),都能被 5 整除。一個數(shù)的各位上的數(shù)的和能被3 整除,這個數(shù)就能被3 整除。一個數(shù)各位數(shù)上的和能被9 整除,這個數(shù)就能被9 整除。能被 3 整除的數(shù)不一定能被9 整除,但是能被9 整除的數(shù)一定能被3 整除。一個數(shù)的末兩
17、位數(shù)能被4或 25整除,這個數(shù)就能被4或 25整除。一個數(shù)的末三位數(shù)能被8或 125整除,這個數(shù)就能被8或 125整除。5、質數(shù)和合數(shù)一個數(shù),如果只有 1 和它本身兩個約數(shù), 這樣的數(shù)叫做質數(shù)或素數(shù) ,100 以內的質數(shù)有: 2、3、5、7、 11、13、 17、19、23、 29、31、37、41、43、 47、53、59、 61、67、71、73、79、 83、89、97。一個數(shù),如果除了1 和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù),例如4 、 6、 8、 9、 12 都是合數(shù)。 1 不是質數(shù)也不是合數(shù),自然數(shù)除了 1 外,不是質數(shù)就是合數(shù)。 如果把自然數(shù)按其約數(shù)的個數(shù)的不同分類,可分為質數(shù)
18、、合數(shù)和 1。專業(yè)資料整理WORD格式6專業(yè)資料整理WORD格式6、分解質因數(shù) 質因數(shù)每個合數(shù)都可以寫成幾個質數(shù)相乘的形式。 其中每個質數(shù)都是這個合數(shù)的因數(shù), 叫做這個合數(shù)的質因數(shù),例如 15=3×5,3 和 5 叫做 15 的質因數(shù)。 分解質因數(shù)把一個合數(shù)用質因數(shù)相乘的形式表示出來,叫做分解質因數(shù)。通常用短除法來分解質因數(shù)。先用能整除這個合數(shù)的質數(shù)去除,一直除到商是質數(shù)為止,再把除數(shù)和商寫成連乘的形式。 公因約數(shù)幾個數(shù)公有的因數(shù)叫做這幾個數(shù)的公因數(shù)。其中最大的一個叫這幾個數(shù)的最大公因數(shù)。公因數(shù)只有 1 的兩個數(shù),叫做互質數(shù)。成互質關系的兩個數(shù),有以下幾種情況:和任何自然數(shù)互質;相鄰
19、的兩個自然數(shù)互質;當合數(shù)不是質數(shù)的倍數(shù)時,這個合數(shù)和這個質數(shù)互質;兩個合數(shù)的公約數(shù)只有 1 時,這兩個合數(shù)互質,如果幾個數(shù)中任意兩個都互質,就說這幾個數(shù)兩兩互質。如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的最大公約數(shù)。如果兩個數(shù)是互質數(shù),它們的最大公約數(shù)就是1。 公倍數(shù) 幾個數(shù)公有的倍數(shù)叫做這幾個數(shù)的公倍數(shù)。其中最大的一個叫這幾個數(shù)的最大公倍數(shù)。求幾個數(shù)的最大公約數(shù)的方法是:先用這幾個數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只有公約數(shù) 1 為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大公約數(shù)。 幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。求幾
20、個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)或其中的局部數(shù)的公約數(shù)去除,一直除到互質或兩兩互質為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。如果兩個數(shù)是互質數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。幾個數(shù)的公約數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。二、性質和規(guī)律專業(yè)資料整理WORD格式7專業(yè)資料整理WORD格式一商不變的規(guī)律商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小一樣的倍,商不變。二小數(shù)的性質小數(shù)的性質:在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。三小數(shù)點位置的移動引起小數(shù)大小的變化1、小
21、數(shù)點向右移動一位,原來的數(shù)就擴大10 倍;小數(shù)點向右移動兩位,原來的數(shù)就擴大100 倍;小數(shù)點向右移動三位,原來的數(shù)就擴大1000 倍2、小數(shù)點向左移動一位,原來的數(shù)就縮小10 倍;小數(shù)點向左移動兩位,原來的數(shù)就縮小100 倍;小數(shù)點向左移動三位,原來的數(shù)就縮小1000 倍3、小數(shù)點向左移或者向右移位數(shù)不夠時,要用“0" 補足位。四分數(shù)的根本性質分數(shù)的根本性質:分數(shù)的分子和分母都乘以或者除以一樣的數(shù)零除外,分數(shù)的大小不變。五分數(shù)與除法的關系1、被除數(shù)÷除數(shù) =被除數(shù) / 除數(shù)2、因為零不能作除數(shù),所以分數(shù)的分母不能為零。3、被除數(shù)相當于分子,除數(shù)相當于分母。三、運算法那么一
22、整數(shù)四那么運算的法那么1、整數(shù)加法:把兩個數(shù)合并成一個數(shù)的運算叫做加法。在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是局部數(shù),和是總數(shù)。加數(shù) +加數(shù) =和一個加數(shù) =和另一個加數(shù)2、整數(shù)減法:兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。在減法里,的和叫做被減數(shù),的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是局部數(shù)。專業(yè)資料整理WORD格式8專業(yè)資料整理WORD格式加法和減法互為逆運算。3、整數(shù)乘法:求幾個一樣加數(shù)的和的簡便運算叫做乘法。在乘法里,一樣的加數(shù)和一樣加數(shù)的個數(shù)都叫做因數(shù)。一樣加數(shù)的和叫做積。在乘法里, 0 和任何數(shù)相乘都得0.1和任何數(shù)相乘都的任何
23、數(shù)。一個因數(shù)×一個因數(shù) = 積一個因數(shù) =積÷另一個因數(shù)4、整數(shù)除法:兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。在除法里,的積叫做被除數(shù),的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。乘法和除法互為逆運算。在除法里, 0 不能做除數(shù)。因為 0 和任何數(shù)相乘都得0,所以任何一個數(shù)除以0,均得不到一個確定的商。被除數(shù)÷除數(shù) =商除數(shù) =被除數(shù)÷商被除數(shù) =商×除數(shù)5、乘方 :求幾個一樣因數(shù)的積的運算叫做乘方。例如3×3=32二小數(shù)四那么運算1、小數(shù)加法:小數(shù)加法的意義與整數(shù)加法的意義一樣。是把兩個數(shù)合并成一個數(shù)的運算。2、小數(shù)減法:
24、小數(shù)減法的意義與整數(shù)減法的意義一樣。兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算.3、小數(shù)乘法:小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義一樣,就是求幾個一樣加數(shù)和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百分之幾、千分之幾是多少。4、小數(shù)除法:小數(shù)除法的意義與整數(shù)除法的意義一樣,就是兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。三分數(shù)四那么運算1、分數(shù)加法:分數(shù)加法的意義與整數(shù)加法的意義一樣。是把兩個數(shù)合并成一個數(shù)的運算。專業(yè)資料整理WORD格式9專業(yè)資料整理WORD格式2、分數(shù)減法:分數(shù)減法的意義與整數(shù)減法的意義一樣。兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算。3、分數(shù)乘法:
25、分數(shù)乘法的意義與整數(shù)乘法的意義一樣,就是求幾個一樣加數(shù)和的簡便運算。4、分數(shù)除法:分數(shù)除法的意義與整數(shù)除法的意義一樣。就是兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。四運算定律1、加法運算定律 加法交換律:兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即a+b=b+a 。 加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再和第一個數(shù)相加它們的和不變,即 a+b)+c=a+(b+c)。2、乘法運算定律 乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,即a×b=b× a。 乘法結合律:三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩
26、個數(shù)相乘,再和第一個數(shù)相乘,它們的積不變,即 (a × b) ×c=a× (b ×c)。乘法分配律:兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘,再把兩個積相加,即(a+b) ×c=a×c+b×c 。 乘法分配律擴展:兩個數(shù)的差與一數(shù)相乘,可以先把它們與這個數(shù)分別相乘,再相減,即(a-b)×c=a× c-b ×c3、減法運算定律從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差不變,即a-b-c=a-(b+c)。一個數(shù)連續(xù)減去兩個數(shù),可以先減去第二個減數(shù),再減去第一個減數(shù),即
27、a-b-c=a-c-b 。4、除法運算定律專業(yè)資料整理WORD格式10專業(yè)資料整理WORD格式一個數(shù)連續(xù)除以兩個數(shù),可以除以這兩個數(shù)的集,即a÷b÷c=a÷(b ×c) 。一個數(shù)連續(xù)除以兩個數(shù),可以先除以第二除數(shù),再除以第一個除數(shù),即a÷b÷c=a÷ c÷ b。5、其它a-b+c=a+c-ba-b+c=a+(b-c)a÷ b×c=a× c÷ ba÷ b×c=a÷ (b ÷c)6、積的變化規(guī)律: 在乘法中,一個因數(shù)不變,另一個因數(shù)擴大或縮
28、小假設干倍,積也擴大或縮小一樣的倍數(shù)。推廣:一個因數(shù)擴大A 倍,另一個因數(shù)擴大B 倍,積擴大 AB倍。一個因數(shù)縮小A 倍,另一個因數(shù)縮小B 倍,積縮小 AB倍。7、商不變性質 : 在除法中,被除數(shù)和除數(shù)同時擴大或縮小一樣的倍數(shù),商不變。 m 0 a ÷b=(a × m) ÷(b ×m)=(a÷m) ÷(b ÷m)推廣:被除數(shù)擴大或縮小A 倍,除數(shù)不變,商也擴大或縮小A 倍。被除數(shù)不變,除數(shù)擴大或縮小A 倍,商反而縮小或擴大A 倍。利用積的變化規(guī)律和商不變規(guī)律性質可以使一些計算簡便。但在有余數(shù)的除法中要注意余數(shù)。如:8500&
29、#247;200= 可以把被除數(shù)、除數(shù)同時縮小100 倍來除,即 85÷2= ,商不變,但此時的余數(shù)1 是被縮小 100被后的,所以復原成原來的余數(shù)應該是100。五計算方法1、整數(shù)加法計算法那么:一樣數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。2、整數(shù)減法計算法那么:一樣數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。3、整數(shù)乘法計算法那么:先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。專業(yè)資料整理WORD格式11專業(yè)資料整理WOR
30、D格式4、整數(shù)除法計算法那么:先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位;如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“ 0占位。每次除得的余數(shù)要小于除數(shù)。5、小數(shù)乘法法那么:先按照整數(shù)乘法的計算法那么算出積,再看因數(shù)中共有幾位小數(shù), 就從積的右邊起數(shù)出幾位, 點上小數(shù)點;如果位數(shù)不夠,就用“ 0補足。6、除數(shù)是整數(shù)的小數(shù)除法計算法那么:先按照整數(shù)除法的法那么去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“ 0,再繼續(xù)除。7、除數(shù)是小數(shù)的除法計算法那么:先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)
31、點也向右移動幾位位數(shù)不夠的補“0,然后按照除數(shù)是整數(shù)的除法法那么進展計算。8、同分母分數(shù)加減法計算方法:同分母分數(shù)相加減,只把分子相加減,分母不變。9、異分母分數(shù)加減法計算方法:先通分,然后按照同分母分數(shù)加減法的的法那么進展計算。10、帶分數(shù)加減法的計算方法:整數(shù)局部和分數(shù)局局部別相加減,再把所得的數(shù)合并起來。11、分數(shù)乘法的計算法那么:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。12、分數(shù)除法的計算法那么:甲數(shù)除以乙數(shù) 0 除外,等于甲數(shù)乘乙數(shù)的倒數(shù)。六 運算順序1、小數(shù)四那么運算的運算順序和整數(shù)四那么運算順序一樣。2、分數(shù)四
32、那么運算的運算順序和整數(shù)四那么運算順序一樣。3、沒有括號的混合運算 : 同級運算從左往右依次運算;兩級運算先算乘、除法,后算加減法。專業(yè)資料整理WORD格式12專業(yè)資料整理WORD格式4、有括號的混合運算 : 先算小括號里面的,再算中括號里面的,最后算括號外面的。5、第一級運算:加法和減法叫做第一級運算。6、第二級運算:乘法和除法叫做第二級運算。四、應用一整數(shù)和小數(shù)的應用1、簡單應用題1簡單應用題:只含有一種根本數(shù)量關系,或用一步運算解答的應用題,通常叫做簡單應用題。2 解題步驟:a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思
33、。也可以復述條件和問題,幫助理解題意。b 選擇算法和列式計算:這是解容許用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四那么運算的含義,分析數(shù)量關系,確定算法,進展解答并標明正確的單位名稱。C 檢驗:就是根據(jù)應用題的條件和問題進展檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。2、復合應用題1有兩個或兩個以上的根本數(shù)量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。2含有三個條件的兩步計算的應用題。求比兩個數(shù)的和多少幾個數(shù)的應用題。比較兩數(shù)差與倍數(shù)關系的應用題。3含有兩個條件的兩步計算的應用題。兩數(shù)相差多少或倍數(shù)關系與其
34、中一個數(shù),求兩個數(shù)的和或差。兩數(shù)之和與其中一個數(shù),求兩個數(shù)相差多少或倍數(shù)關系。4解答連乘連除應用題。5解答三步計算的應用題。6解答小數(shù)計算的應用題:小數(shù)計算的加法、減法、乘法和除法的應用題,他們的數(shù)量關系、構造、和解題方式都與正式應用題根本一樣,只是在數(shù)或未知數(shù)中間含有小數(shù)。專業(yè)資料整理WORD格式13專業(yè)資料整理WORD格式d 答案:根據(jù)計算的結果,先口答,逐步過渡到筆答。(7) 解答加法應用題:a 求總數(shù)的應用題:甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。b 求比一個數(shù)多幾的數(shù)應用題:甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。8) 解答減法應用題:a 求剩余的應用題:從數(shù)中去掉一局部
35、,求剩下的局部。-b求兩個數(shù)相差的多少的應用題:甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。c 求比一個數(shù)少幾的數(shù)的應用題:甲數(shù)是多少,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。(9) 解答乘法應用題:a 求一樣加數(shù)和的應用題:一樣的加數(shù)和一樣加數(shù)的個數(shù),求總數(shù)。b 求一個數(shù)的幾倍是多少的應用題:一個數(shù)是多少,另一個數(shù)是它的幾倍,求另一個數(shù)是多少。( 10)解答除法應用題:a 把一個數(shù)平均分成幾份,求每一份是多少的應用題:一個數(shù)和把這個數(shù)平均分成幾份的,求每一份是多少。b 求一個數(shù)里包含幾個另一個數(shù)的應用題:一個數(shù)和每份是多少,求可以分成幾份。C 求一個數(shù)是另一個數(shù)的的幾倍的應用題:甲數(shù)乙
36、數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。d 一個數(shù)的幾倍是多少,求這個數(shù)的應用題。11常見的數(shù)量關系:總價 = 單價×數(shù)量路程 = 速度×時間工作總量 =工作時間×工效總產(chǎn)量 =單產(chǎn)量×數(shù)量3、典型應用題具有獨特的構造特征的和特定的解題規(guī)律的復合應用題,通常叫做典型應用題。1平均數(shù)問題: 平均數(shù)是等分除法的開展。解題關鍵:在于確定總數(shù)量和與之相對應的總份數(shù)。算術平均數(shù):幾個不相等的同類量和與之相對應的份數(shù),求平均每份是多少。數(shù)量關系式:數(shù)量之和÷數(shù)量的個數(shù) =算術平均數(shù)。專業(yè)資料整理WORD格式14專業(yè)資料整理WORD格式加權平均數(shù):兩個以上假設干
37、份的平均數(shù),求總平均數(shù)是多少。數(shù)量關系式 局部平均數(shù)×權數(shù)的總和÷權數(shù)的和=加權平均數(shù)。差額平均數(shù):是把各個大于或小于標準數(shù)的局部之和被總份數(shù)均分,求的是標準數(shù)與各數(shù)相差之和的平均數(shù)。數(shù)量關系式: 大數(shù)小數(shù)÷2=小數(shù)應得數(shù)最大數(shù)與各數(shù)之差的和÷總份數(shù)=最大數(shù)應給數(shù)最大數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應得數(shù)。例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地, 又以每小時 60千米的速度從乙地開往甲地。求這輛車的平均速度。分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為“1,那么汽車行駛的總路程為“ 2,從甲地到乙地的
38、速度為 100,所用的時間為,汽車從乙地到甲地速度為 60千米,所用的時間是,汽車共行的時間為 + = ,汽車的平均速度為 2÷ =75 千米2歸一問題: 相互關聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是一樣的,這種問題稱之為歸一問題。根據(jù)求“單一量的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。一次歸一問題,用一步運算就能求出“單一量的歸一問題。又稱“單歸一。兩次歸一問題,用兩步運算就能求出“單一量的歸一問題。又稱“雙歸一。正歸一問題:用等分除法求出“單一量之后,再用乘
39、法計算結果的歸一問題。反歸一問題:用等分除法求出“單一量之后,再用除法計算結果的歸一問題。解題關鍵:從的一組對應量中用等分除法求出一份的數(shù)量單一量,然后以它為標準,根據(jù)題目的要求算出結果。數(shù)量關系式:單一量×份數(shù) =總數(shù)量正歸一總數(shù)量÷單一量 =份數(shù)反歸一例 一個織布工人,在七月份織布4774 米 , 照這樣計算,織布 6930 米,需要多少天?分析:必須先求出平均每天織布多少米,就是單一量。693 0÷ 477 4÷ 31 =45 天3歸總問題: 是單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)量或單位數(shù)量的個數(shù),通過求總數(shù)量求得單位數(shù)量的個數(shù)或單位數(shù)
40、量 。特點:兩種相關聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。專業(yè)資料整理WORD格式15專業(yè)資料整理WORD格式數(shù)量關系式:單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量=另一個單位數(shù)量單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量 = 另一個單位數(shù)量。例 修一條水渠,原方案每天修800米 , 6天修完。實際 4天修完,每天修了多少米?分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做“歸總問題。不同之處是“歸一先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6
41、7; 4=1200米4和差問題: 大小兩個數(shù)的和,以及他們的差,求這兩個數(shù)各是多少的應用題叫做和差問題。解題關鍵:是把大小兩個數(shù)的和轉化成兩個大數(shù)的和或兩個小數(shù)的和,然后再求另一個數(shù)。解題規(guī)律:和差÷ 2 =大數(shù)大數(shù)差 =小數(shù)和差÷ 2=小數(shù)和小數(shù) = 大數(shù)例 某加工廠甲班和乙班共有工人94 人,因工作需要臨時從乙班調 46人到甲班工作,這時乙班比甲班人數(shù)少 12 人,求原來甲班和乙班各有多少人?分析:從乙班調 46 人到甲班,對于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉化成2個乙班,即 9 4 12,由此得到現(xiàn)在的乙班是 9 4 12÷ 2=41 人,乙班在調出 46人之前應
42、該為 41+46=87 人,甲班為 9 4 87=7 人5和倍問題: 兩個數(shù)的和及它們之間的倍數(shù)關系,求兩個數(shù)各是多少的應用題,叫做和倍問題。解題關鍵:找準標準數(shù)即 1 倍數(shù)一般說來,題中說是“誰的幾倍,把誰就確定為標準數(shù)。求出倍數(shù)和之后,再求出標準的數(shù)量是多少。根據(jù)另一個數(shù)也可能是幾個數(shù)與標準數(shù)的倍數(shù)關系,再去求另一個數(shù)或幾個數(shù)的數(shù)量。解題規(guī)律:和÷倍數(shù)和 =標準數(shù)標準數(shù)×倍數(shù) =另一個數(shù)例 : 汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛
43、內,為了使總數(shù)與 5+1 倍對應,總車輛數(shù)應 115-7 輛。列式為 115-7 ÷ 5+1 =18 輛, 18 × 5+7=97 輛6差倍問題: 兩個數(shù)的差,及兩個數(shù)的倍數(shù)關系,求兩個數(shù)各是多少的應用題。解題規(guī)律:兩個數(shù)的差÷倍數(shù) 1 = 標準數(shù) 標準數(shù)×倍數(shù) =另一個數(shù)。例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3倍,甲乙兩繩所剩長度各多少米?各減去多少米?專業(yè)資料整理WORD格式16專業(yè)資料整理WORD格式分析:兩根繩子剪去一樣的一段,長度差沒變,甲繩所剩的長度是乙繩的3 倍,實比
44、乙繩多3-1 倍,以乙繩的長度為標準數(shù)。 列式 63-29 ÷ 3-1 =17 米乙繩剩下的長度, 17× 3=51米甲繩剩下的長度, 29-17=12 米剪去的長度。7行程問題: 關于走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據(jù)這類問題的規(guī)律解答。解題關鍵及規(guī)律:同時同地相背而行:路程=速度和×時間。同時相向而行:相遇時間=速度和×時間同時同向而行速度慢的在前,快的在后:追及時間 =路程速度差。同時同地同向而行速度慢的在后,快的在前:路程
45、 =速度差×時間。例 甲在乙的后面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米,甲幾小時追上乙?分析:甲每小時比乙多行 16-9 千米,也就是甲每小時可以追近乙 16-9 千米,這是速度差。甲在乙的后面28千米 追擊路程, 28千米 里包含著幾個16-9千米,也就是追擊所需要的時間。列式2 8÷ 16-9=4小時8流水問題: 一般是研究船在“流水中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。船速:船在靜水中航行的速度。水速:水流動的速度。順水速度:船順流航行的速度。逆水
46、速度:船逆流航行的速度。順速 =船速水速逆速 =船速水速解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。解題時要以水流為線索。解題規(guī)律:船行速度 =順水速度 + 逆流速度÷ 2流水速度 =順流速度逆流速度÷2路程 =順流速度×順流航行所需時間專業(yè)資料整理WORD格式17專業(yè)資料整理WORD格式路程 =逆流速度×逆流航行所需時間例 一只輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比順水多行 2 小時,水速每小時 4 千米。求甲乙兩地相距多少千米?分析:此題必須先知
47、道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。順水速度和水流速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為284 × 2=20 千米 2 0× 2 =40千米40 ÷4× 2=5小時28× 5=140 千米。9復原問題: 某未知數(shù),經(jīng)過一定的四那么運算后所得的結果,求這個未知數(shù)的應用題,我們叫做復原問題。解題關鍵:要弄清每一步變化與未知數(shù)的關系。解題規(guī)律:從最后結果 出發(fā),采用與原題中相反
48、的運算逆運算方法,逐步推導出原數(shù)。根據(jù)原題的運算順序列出數(shù)量關系,然后采用逆運算的方法計算推導出原數(shù)。解答復原問題時注意觀察運算的順序。假設需要先算加減法,后算乘除法時別忘記寫括號。例 某小學三年級四個班共有學生 168人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6人到一班,一班調 2 人到四班,那么四個班的人數(shù)相等,四個班原有學生多少人?分析:當四個班人數(shù)相等時,應為 168÷ 4 ,以四班為例,它調給三班3 人,又從一班調入 2 人,所以四班原有的人數(shù)減去3 再加上2等于平均數(shù)。四班原有人數(shù)列式為168 ÷ 4-2+3=43 人一班原有人數(shù)列式為 168
49、÷ 4-6+2=38人;二班原有人數(shù)列式為 168÷ 4-6+6=42 人三班原有人數(shù)列式為 168÷ 4-3+6=45人。10植樹問題: 這類應用題是以“植樹為內容。但凡研究總路程、株距、段數(shù)、棵樹四種數(shù)量關系的應用題,叫做植樹問題。解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形, 從而確定是沿線段植樹還是沿周長植樹,然后按根本公式進展計算。解題規(guī)律:沿線段植樹棵樹 =段數(shù) +1棵樹 =總路程÷株距 +1株距 =總路程÷棵樹 -1 總路程 =株距×棵樹 -1沿周長植樹棵樹 =總路程÷株距專業(yè)資料整理WORD格式18
50、專業(yè)資料整理WORD格式株距 =總路程÷棵樹總路程 =株距×棵樹例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米。后來全部改裝,只埋了 201 根。求改裝后每相鄰兩根的間距。分析:此題是沿線段埋電線桿, 要把電線桿的根數(shù)減掉一。 列式為 50 × 301-1 ÷ 201-1 =75 米11 盈虧問題: 是在等分除法的根底上開展起來的。他的特點是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次缺乏或兩次都有余 ,或兩次都缺乏,所余和缺乏的數(shù)量,求物品適量和參加分配人數(shù)的問題,叫做盈虧問題。解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差也稱總差額 ,用前一個差去除后一個差,就得到分配者的數(shù),進而再求得物品數(shù)。解題規(guī)律:總差額÷每人差額=人數(shù)總差額的求法可以分為以下四種情況:第一次多余,第二次缺乏,總差額=多余 + 缺乏第一次正好,第二次多余或缺乏
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國連接器制造市場發(fā)展動態(tài)及前景趨勢預測報告
- 2025-2030年中國轎車市場競爭格局及發(fā)展趨勢分析報告
- 2025-2030年中國車用散熱器制造市場運行狀況與前景趨勢分析報告
- 產(chǎn)品代理銷售與市場推廣協(xié)議簽署文件
- 2025-2030年中國節(jié)水灌溉行業(yè)運行現(xiàn)狀及發(fā)展前景分析報告
- 2025-2030年中國脫硫市場發(fā)展前景與投資戰(zhàn)略研究報告
- 2025-2030年中國真皮沙發(fā)行業(yè)市場發(fā)展狀況與投資策略建議報告
- 2025-2030年中國電視傳媒行業(yè)運營態(tài)勢及發(fā)展前景分析報告
- 2025-2030年中國電炸鍋行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 年合同二手房買賣定金合同
- 酒店客房管理手冊
- 基坑支護及土方開挖施工方案
- 國家安全教育(臨沂職業(yè)學院)知到智慧樹答案
- 公司安全生產(chǎn)事故隱患內部報告獎勵工作制度
- 《室內設計公共空間》課件
- BD FACSCalibur流式細胞儀操作手冊
- 投資合作協(xié)議范本:投資合作協(xié)議書范本
- 外研版一年級上冊新交際英語(2024)Unit 6 Colour單元整體教學設計
- 抖音基礎課程培訓
- 新員工培訓:廉潔從業(yè)
- 新能源汽車驅動電機及控制系統(tǒng)檢修課件 學習情境2:典型驅動電機的工作原理
評論
0/150
提交評論