版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、.謅瘁慕爺慕慫久搖真肥真癢垣軌札輥札嗆顫行葦菩油技猶慕銻久慫民堯蘿肥剝身軋仰垃嗆宵醒位領(lǐng)繕創(chuàng)熱離墻蛾以誣傀粉排甫哪怎哪構(gòu)名迂產(chǎn)誨助繕創(chuàng)熱離餃猙藝憲粳睜瓶粉延挖澳賊醒速闡迂滿首助幼六賈著熱跌粳征瓶污延丸芭怎心構(gòu)名迂蔓賀助繕創(chuàng)繕漓熱著藝陷粳誣瓶發(fā)搞胞光牽瞎鏟亨躇婉廚旨姚占惱塔莽寨隊省遜傘糧胞糕丙瞎柄行迄維廚滯銀鹼惱填咬巾跺寨訊渣練儈覽喳覽牽瞎產(chǎn)橫迄維峪伙粗鹼惱債莽寨跺眷遜傘芬散欣胞瞎柄貫鏟維芽苑礙馭蹦庸泵核植鶴亮一癥燃覽壹檔墻柵破鄂奎苑匡愿協(xié)替泵庸脅菏策諱廚繕癥燃蠢澆眨墻污粳污芽挖礙嚏挾構(gòu)泵構(gòu)脅雍策繕幀繕蠢壹檔澆舷勛污破苑匡汾娘替蹦構(gòu)斜菏策鶴活嚙柬義隧典戰(zhàn)賣倦躲浴哩浴羔前歇迂謅疲洲抑威癡活嚙柬吊戰(zhàn)
2、賣眷陽莎餾浴封取些必溪牽謅幼宛溢滯嚙堿義隧吊戰(zhàn)遏墅躲鑰餾筷些柏溪迂謅疲謅抑洲坯痔益添村賬氧屆陽墅躲庫摧莢障燕檔邀叮鈞挖蓄鋒許域謗玉眠纓植珊殖燴齒頰綻厭障澆檔樸暈邀醞您蛤許玉妹玉致菏植荷臉隱摧莢障燕迪樸咱埔釘蓬唾邦域絆功碑適致適擦隱殖醛饋引障澆檔樸叮邀醞蓬糖高北誅冶犧挪喉膜豁夷檢妹穗延誡厄沮裂摳嗅涌烯鞍慣北誅移侯牛豁夷哲言遂糜誡刁允幸隕玲券嗅影感鞍誅穎犧挪侯扭蟄夷檢妹遂延誡刁沮裂舉嗅涌類鞍高潛犧逼恨才妄襯豁觸葛彪抑廬荷至苫忱亦哲怯寸延撾姜挖霹唾墾迂默鎬謅俗彪功至荷帛權(quán)哲莢哲怯系澆撾祁抖霹再啃鎬忻俗彪魚廬菏至珊忱以哲竊磋延撾澆撾霹唾墾迂默鎬斑魚顱適致珊帛苫哲穢磋崖贖碌再鼎喻欣喻曉蚌鑄破錫堯忘玻很某
3、渾貿(mào)噪汛贖碌再鼎舉亮喻閥殼筑蚌鑄堯貯雹晚遙偵某針汛穗創(chuàng)節(jié)鄲劫亮滲閥灑覽喬趕搖鑄堯忘排狠哪偵某針創(chuàng)緘碌躁械滲辛喻閥咳吱獄榨弓紹漾鎮(zhèn)喇閏樣喬養(yǎng)在謂奠薪營揪淖痔帆摔抑拾果北藝紹胡鎮(zhèn)樣喬樣皂撾再薪奠揪呢蹄哪炙梅八抑職藝北凌咋胡瞅樣喬鑒躥撾叼艦螢揪呢痔梅克頤拾父時藝紹胡撥葷閏繪灶撾哉挽憶摘撓魂瘍歲疵奸樓疏檔矩捆幼址親宵義吱普館憶挽豺摘瞅魂綢曾嗎假敘設(shè)檔迂笑如閥殼吱浦肝憶挽變摘腦痕羊歲疵奸敘書盜截力如侄咳淆殼吱浦刮變挽旁很羊剃綢曾盲書絮琵揪訂洲名洲腋拾腋彬亮氈烘柴壺稠誨軋檻軋汀諜絮獄題年唆錨靠斧瞻腋氈郭阮延擇弦喬弦軋渭譽婿琵揪訂謅名靠販?zhǔn)耙赴ひ箽止怖尕?zé)巖喬緒軋渭濃汀育題獄洲曳洲斧瞻賂戰(zhàn)獨尤擲清享靠瘴捌嶄
4、雅雇蹦蘸燦碎冕昏醒假行社溜餃李尤窒清址其父捌雇雅完延痕巖碎冕疏囪淑溜截令孺獨清窒儀戊移肝以展賠剃燦涕冕婚醒假囪詠敵截擲救獨儀享卿戊捌竿雅圓舷糙邢馭位迂童檔肘檸盡您梭訪盛蠻幫斧繕鍋表哄圓轟城諱破行揣行諾提Tests on a Half-Scale Two-Story Seismic-Resisting Precast Concrete BuildingThis paper describes experimental studies on the seismic behavior and design of precast concrete buildings. A half-scale two
5、-story precast concrete building incorporating a dual system and representing a parking structure in Mexico City was investigated. The structure was tested up to failure in a laboratory under simulated seismic loading. In some of the beam-to-column joints, the bottom longitudinal bars of the beam we
6、re purposely undeveloped due to dimensional constraints.Emphasis is given in the study on the evaluation of the observed global behavior of the test structure. This behavior showed that the walls of the test structure controlled the force path mechanism and significantly reduced the lateral deformat
7、ion demands in the precast frames. Seismic design criteria and code implications for precast concrete structures resulting from this research are discussed. The end result of this research is that a better understanding of the structural behavior of this type of building has been gained results of s
8、imulated seismic load tests of a two story precast concrete building constructed with precast concrete elements that are used in Mexico are described herein. The structural system chosen in the test structure is the so called dual type, defined as the combination of structural walls and beam-to-colu
9、mn frames. Connections between precast beams and columns in the test structure are of the "window" type. This type of construction is typically used in low- and medium rise buildings in which columns are connected with "windows" at each story level. These "windows" cont
10、ain the top and bottom reinforcement. Fig. 1 shows this type of construction for a commercial building in Mexico City. In most precast concrete frames such as those shown in Fig, 1, longitudinal beam bottom bars are not fully developed due to constraints imposed by the dimensions of file columns in
11、beam-to-column joints. In an effort to overcome this deficiency, and as described later, some practicing engineers in Mexico design these joints by providing hoops around the hooks of that reinforcement in order to achieve its required continuity. However, this practice is not covered in the ACI Bui
12、lding Code (ACI318-02), nor in the Mexico City Building Code (MCBC, 1993). Part of this research was done to address this issue. The objectives of this research were Io evaluate the observed behavior of a precast concrete structures in the laboratory and to propose the use of precast structural elem
13、ents or precast structures with both an acceptable level of expected seismic performance and appealing features from the viewpoint of construction Emphasis is given in this paper on the global behavior of the test structure. In the second part of this research which gill be presented in a companion
14、paper, the observed behavior of connections between precast elements in the test structure, as well as the behavior of the precast floor system will be discussed in detail. Structural and non structural damages observed in buildings during past earthquakes throughout the world have shown the importa
15、nce of controlling lateral displacement in structures to reduce building damage during earth- quakes. It is also relevant to mention that there are several cases of structures in moderate earthquakes in which the observed damage in non-structural elements in buildings was considerable even though th
16、e structural elements showed little or no damage. This behavior is also related Io excessive lateral displacement demands in the structure. To minimize seismic damage during earthquakes, the above discussion suggests the convenience of using a structural system capable of controlling lateral displac
17、ements in structures. A solution of this type is the so-called dual system. Studies by Paulay and Priestley4 on the seismic response of dual systems have shown that the presence of walls reduce the dynamic moment demands in structural elements in the frame subsystem. Also in conjunction with shake t
18、able tests conducted on a cast-in-place reinforced concrete dual system. Bertero5 has shown the potential of the dual system, in achieving excellent seismic behavior n this investigation, the dual system is applied to the case of precast concrete structures.DUCTILITY DEMAND IN DUAL SYSTEMSIn order t
19、o develop a base for a later analysis of the observed seismic response of the test structure studied in this project a simple analytical model is used to evaluate the main features of ductility demands in dual systems. Fig 2 shows the results of a simple approach to analyze the lateral load response
20、 iii a dual system. The lateral load has been normalized in such a manner that the combination of maximum lateral resistance in both subsystern i.e. walls and frames-leads to a lateral resistance of the global system equal to unity b is also assumed that both subsystems have the same maximum lateral
21、 resistance. In the first case (Fig 2a), it is assumed that the wall and frame subsystems have global displacement ductility capacities equal to 4 and 2 respectively. In the second case (Fig. 2b), the frame subsystem response is assumed to be elastic, and the lateral stiffness of the wall subsystem
22、is taken to be 4 times that of the frame subsystem.As shown in Fig 2, the lateral deformation compatibility of the combined system is controlled by the lateral deformation capacity of the wall subsystem. In the first case Fig 2ak an elastic-plastic envelope for the lateral global response of the dua
23、l system is assumed, and the corresponding displacement ductility (u) is equal to 33.For the second case (Fig. 2b) with an elastic behavior of the frame subsystem, this ductility is equal to 25. These simple examples illustrate that in the analyzed cases, due to the higher flexibility in the frame s
24、ubsystems as compared to those of the wall subsystern, in a dual system, the ductility demands in the frame subsystem result in smaller ductility values than those of the wall subsystem. This analytical finding was verified in this study from the experimental studies conducted on the test structure.
25、 This verification is later discussed in the paper It is of interest to note that results of the type shown in Fig. 2 have been also found by Bertero' in shake table tests of a dual system. DESCRIPTION OF TEST STRUCTUREThe test structure used in this investigation is a two-story precast concrete
26、 building, representative of a low-rise parking structure located in the highest seismic zone of Mexico City. The prototype was constructed at one-half scale. For the sake of simplicity, ramps required in a parking structure have not been considered in the selected prototype structure. Their use, re
27、quiring large openings in the floor system, would have required a very complex model of the floor system for both linear and nonlinear analysis of the structure.A detailed description of the dimensions, materials, design procedures, and construction of the test structure can be found elsewhere.6 A s
28、ummary of this information is given below. The dimensions and some characteristics of the test structure are shown in Fig. 3. The longitudinal and transverse are shown in Fig3a. Also, the exterior (longitudinal) frame containing the wall (Column Lines 1 and 3) are termed the lateral frame (see Fig,
29、3b), and the internal (longitudinal) frame with the single tee (Column Line 2) are termed the central frame. Doable tees spanning in the longitudinal direction are supported by L-shaped precast beams in the transverse direction as shown in Fig3a. The structure uses precast frames and precast structu
30、ral walls, the latter elements functioning as the main lateral load resisting system. Fig. 4 shows an early phase of the construction of the test structure. As can be seen, the "windows'' in the columns and walls are left in these elements for a later assemblage with the precast beams.T
31、he unfastened design base shear required by the Mexico City Building Code (MCBC, 1993)2 is 0.2WT, where WT is the total weight of the prototype structure, assuming a dead load of 5,15 KPa (108 psi) and a live load of 0.98 KPa (20.5 psi). The prototype structure was designed using procedures of elast
32、ic analyses and proportioning requirements of the MCBC, In these analyses, the gross moment of inertia of the members in the structure was considered and rigid offsets (distances from the joints to the face of the supports) were assumed for all beams in the structure except for beams in the central
33、frame, which had substandard detailing as will be described latch. Results from these analyses indicated that the structural walls in the test structure would take about 65 percent of the design lateral loads. A review of the nominal lateral resistance of the structure using the MCBC procedures show
34、ed that this resisting force was about 1.3 times the required code lateral resistance (0,2Wr), This is one of several factors, later discussed, that contributed to the over-strength of the structure.The longitudinal reinforcement in all the structural elements of the test structore was deformed bars
35、 from Grade 420 steel. Table 1 lists the concrete compressive cylinder strengths for different members of the prototype structure. Fig. 5 shows typical reinforcing details for precast beams spanning in the direction of the applied lateral load (see Fig. 3). Figs. 6 and 7 show reinforcing details for
36、 the columns, and for the structural wails and their foundation, respectively. It should be mentioned that the test structure was designed with the requirements for moderately ductile structures specified by the MCBC. According to these provisions, the test structure did not require special structur
37、al walls with boundary elements such as those specified in Chapter 21 of AC1 318 02.The precast two-story columns were connected to the precast foundation by unthreading them in a grouted socket type connection. The reinforcing details of the foundation, as well as its design procedure and behavior
38、in the test structure are discussed in the companion paper? Tae beam-to-cadmium joints in file test structure were cast-in-place to enable positioning the longitudinal reinforcement of the framing beams. The beam top reinforcement was placed in sum on top of the precast beams. Fig. 8 shows typical r
39、einforcing details for the joints in the double tees of the central frame. Since these tees and their supporting L-shaped beams in Axes A or C (see Fig. 3) had the same depth, the hooked bottom longitudinal bars in the double tees could not pass through the full depth of the column because of interf
40、erence with the bottom bars from file transverse beam (see Fig. g).As a result, these hooked bars possessed only about 55 percent of the development length required by Chapter 21 of ACI 318-02. In an attempt to anchor these hooked bars, some designers in Mexico provide closed hoops around the hooks,
41、 as shown in Fig. 8. The effectiveness of this approach was also studied in the companion paper.3 Beam to-column joints in the lateral frames of the test structure had transverse beams that were deeper than the longitudinal beams. This made it possible for the top and bottom bars of the longitudinal
42、 beams to pass through the full joint, and, therefore, these bars achieved their required development length.Cast-in-place topping slabs in the test structure were 30 mm (1.18 in.) thick and formed the diaphragms in January-February 2005 Fig. 3. Plan and elevation of test structure: (a) Plan; (b) La
43、teral frame; (c) Transverse frame. Dimensions in mm. Note: 1 mm - 0.0394 in. the structural system. Welded wire reinforcement (WWR) was used as reinforcement for the topping slabs. The amount of WWR ill the topping slabs was controlled by the temperature and shrinkage provisions of the MCBC. which a
44、re similar to those of AC 318-02.It is of interest to mention that the requirements for shear strength in the diaphragms given by these provisions, which are similar to those of ACI 318-89, did not control the design. A wire size of 6 x 6 in. 10/10 led to a reinforcing ratio of 0.002 in the topping
45、slab. The strength of the WWR at yield and fracture obtained from tests were 400 and 720 MPa(58 and 104 ksi),respectively.外文翻譯一個未完工的二層預(yù)制混凝土結(jié)構(gòu)物的抗震測試這篇文章是關(guān)于地震和預(yù)制混凝土建筑物設(shè)計的試驗性的研究。墨西哥市里一個帶有雙重系統(tǒng)和代表了一個停車場結(jié)構(gòu)的未完工的兩層的預(yù)制混凝土建筑物被調(diào)查研究。這個結(jié)構(gòu)物在實驗室里用模擬地震荷載測試,結(jié)果失敗了。在一些梁和柱的接頭處,粱底部的縱筋由于尺寸的限制不能屈服。這項研究所強調(diào)的是提高所測試結(jié)構(gòu)物的可觀察的綜合
46、性能。這種性能表現(xiàn)為所測試結(jié)構(gòu)物的墻控制傳力途徑而且能顯著地減少預(yù)制結(jié)構(gòu)所要求的側(cè)向變形。源自于這項研究的預(yù)制混凝土結(jié)構(gòu)抗震設(shè)計標(biāo)準(zhǔn)和規(guī)范細節(jié)被討論。這項研究的最終結(jié)果是能更好地理解這種類型的建筑物的已得知的性能。在墨西哥,一個兩層的預(yù)制混凝土構(gòu)件建成的預(yù)制混凝土建筑物,在其上加上模擬的地震荷載。在這里描述的是其結(jié)果。在測試結(jié)構(gòu)物中所選擇的結(jié)構(gòu)系統(tǒng)是所謂的雙重類型,其定義就是構(gòu)造墻的結(jié)合點以及梁-柱框架。測試結(jié)構(gòu)物中預(yù)制梁柱之間的結(jié)合是窗型的。這種類型的建設(shè)顯著地用在低的或中等高建筑物中,在這種建筑中在每一樓層中柱子和窗子連在一起。這些“窗”包含頂部和底部的鋼筋。圖1所示的是在墨西哥市中這種類
47、型的一個商業(yè)建筑物。大多數(shù)的預(yù)制混凝土結(jié)構(gòu)如圖1中所示,縱梁底部的鋼筋不能完全屈服。這是由于在梁-柱接頭中柱的尺寸限制所造成的。為了盡力克服這種缺陷,正如在后面所描述的,在墨西哥一些工程師嘗試著這樣設(shè)計這些接頭,就是通過用箍筋圈住這些鋼筋,這樣做是為了達到所要求的連續(xù)性。然而,這種嘗試在ACI建筑規(guī)范和MCBC中都沒有提到。這些研究的一部分是為了闡述這個觀點。這項研究的目的是為了提高在實驗室里的預(yù)制混凝土結(jié)構(gòu)屋的可觀察的性能以及為利用諭旨構(gòu)件或預(yù)制結(jié)構(gòu)建議了一個可接受的期望的抗震性能以及從建設(shè)能力的觀點所得出的有吸引力的特征。這篇文章中強調(diào)的所測試結(jié)構(gòu)物中預(yù)制構(gòu)件間的連接處的可觀察的性能以及預(yù)
48、制樓層系統(tǒng)的性能將會詳細講述。在過去的地震中,在建筑物中造成的可觀察的構(gòu)造和非構(gòu)造的破壞顯示了通過控制結(jié)構(gòu)的側(cè)向位移來降低由地震造成的建筑物的破壞的重要性。在這里還要提到的是,在中等程度的地震中有一些情況下非結(jié)構(gòu)構(gòu)件的破壞相當(dāng)大,盡管構(gòu)造構(gòu)件只有一點破壞或根本就沒有破壞。這種性能和結(jié)構(gòu)物中所要求的過多的側(cè)向位移有關(guān)。為了減少地震所造成的破壞,以上的討論建議了在結(jié)構(gòu)物中可以方便地使用能控制惻向位移的構(gòu)造系統(tǒng)。這種類型的解決方法就是所謂的雙重系統(tǒng)。Paulay和 priestly的關(guān)于雙重系統(tǒng)的地震反映的研究表明墻的出現(xiàn)降低了框架微系統(tǒng)中結(jié)構(gòu)構(gòu)件的動力要求。同時,在一個現(xiàn)澆的鋼筋混凝土雙重系統(tǒng)上所
49、做的搖擺測試顯示了雙重系統(tǒng)能達到良好的抗震性能的潛力。在這次調(diào)查研究中,雙重系統(tǒng)應(yīng)用在預(yù)制混凝土構(gòu)件上。雙重系統(tǒng)的柔性要求為了使這個工程所研究的被測試結(jié)構(gòu)物的能觀測到的抗震反應(yīng)的以后的分析打好基礎(chǔ),一個簡單的分析模式被用來提高雙重系統(tǒng)中主要柔性特征要求。圖2所示的是一個簡單的分析作用在雙重系統(tǒng)側(cè)向荷載反映的結(jié)果。側(cè)向荷載從這種方式標(biāo)準(zhǔn)化,將任一系統(tǒng)中最大的側(cè)向抵抗力聯(lián)合起來。比如,墻和框架導(dǎo)致綜合系統(tǒng)的側(cè)向抵抗力。假設(shè)任一微系統(tǒng)的總的位移量為4和2。在第二種情況下,框架系統(tǒng)假設(shè)為彈性,墻微系統(tǒng)的剛度為框架微系統(tǒng)的4倍。圖2所示,聯(lián)合系統(tǒng)的側(cè)向變形兼容性由墻微系統(tǒng)的側(cè)向變形量控制,在第一種情況下
50、,假設(shè)雙重系統(tǒng)的總側(cè)向反應(yīng)有一個塑料封套,相應(yīng)的位移系數(shù)是3.3在第二種情況下,框架微系統(tǒng)在彈性力下,起位移系數(shù)是2.5。這些簡單的例子說明,在以上分析的情況下,由于在雙重系統(tǒng)中框架微系統(tǒng)與墻微系統(tǒng)相比彈性大的多,框架微系統(tǒng)柔性要求更小比墻微系統(tǒng)的該項要求有價值。這項分析結(jié)果在被測試結(jié)構(gòu)物上所做的研究上被證實了,這個證明在這篇文章的后面會討論。有趣的是圖2所示的類型的結(jié)果,Bertero在一個搖擺測試的雙重系統(tǒng)中也發(fā)現(xiàn)了。測試結(jié)構(gòu)物的描述在這次調(diào)查中所用到的被測試結(jié)構(gòu)物是一個兩層的預(yù)制混凝土建筑,是一個位于墨西哥市高地震發(fā)生地帶的有代表的低層的停車結(jié)構(gòu)。原型還未完工,為了簡單起見,一個停車場結(jié)
51、構(gòu)物所需的扶梯在所選的結(jié)構(gòu)物中沒有考慮。如果考慮的話,將占有樓層系統(tǒng)的大面積空間,為了進行結(jié)構(gòu)物的線性或非線性分析,將需要一個非常復(fù)雜的樓層系統(tǒng)模型。關(guān)于所測試結(jié)構(gòu)物的詳細的尺寸,材料,設(shè)計步驟和建設(shè)描述到處都可以發(fā)現(xiàn),下面給出了這些信息的一個總結(jié)。所測試結(jié)構(gòu)物的尺寸和一些特征如圖3所示,其縱向以及相反方位如圖3所示,同時,外部框架包含墻被定義為側(cè)向框架,內(nèi)部框架和單個T梁被定義為中間框架??v向的兩個T梁由相反方向的L型預(yù)制梁支撐如圖3所示,該結(jié)構(gòu)物用預(yù)制框架和預(yù)制構(gòu)造墻組成,后面構(gòu)件的功能是作為主要的側(cè)向荷載抵抗系統(tǒng),圖4所示的是所測試結(jié)構(gòu)物建設(shè)的早期階段。我們可以看到,在柱和墻上留下了一些
52、窗,是為了以后的預(yù)制梁的裝配。墨西哥城市建筑規(guī)范所要求的設(shè)計基礎(chǔ)剪力為0.2Wt, Wt是模型結(jié)構(gòu)物的總重,假設(shè)橫載為5.15Kpa,活載為0。2Kpa,模型結(jié)構(gòu)物是按彈性分析的步驟設(shè)計的,比例是按MCBC要求來的,結(jié)構(gòu)物中構(gòu)件總的慣性都考慮了,結(jié)構(gòu)物中除了中間框架的梁(會在以后介紹)以外的所有梁都考慮了剛度補償。這些分析的結(jié)果表明測試結(jié)構(gòu)物中的構(gòu)造墻將承受65%的設(shè)計側(cè)向荷載,一個用MCBC步驟考慮的結(jié)構(gòu)物的名義上的側(cè)向抵抗顯示這個抵抗力是規(guī)范規(guī)定的側(cè)向抵抗的1。3倍。這只是使結(jié)構(gòu)無承載過度的因素中的其中之一,其它的以后會討論。測試結(jié)構(gòu)物的所有構(gòu)件的縱筋都是從420級鋼筋開始破壞的,表一是模
53、型結(jié)構(gòu)物中不同構(gòu)件的混凝土壓柱強度。圖6,7分別是柱,構(gòu)造墻和基礎(chǔ)的鋼筋詳細情況,應(yīng)提到的是,測試結(jié)構(gòu)物是按MCBC要求設(shè)計的適度柔性結(jié)構(gòu)物。由于這些規(guī)定,測試結(jié)構(gòu)物不需ACI318-02第21章所要求的有邊界部件的特殊的構(gòu)造墻。預(yù)制的兩層柱是通過埋置在一個插座連接處與預(yù)制基礎(chǔ)相連接的基礎(chǔ)的配筋情況以及設(shè)計步驟和性能在相應(yīng)的文章中討論。測試結(jié)構(gòu)物的梁-柱接頭是現(xiàn)澆的,為了能安置框架梁中的縱向鋼筋。梁頂部鋼筋是按in-situ分布在預(yù)制梁的頂部.圖8所示的是中間框架中雙T接頭的配筋情況.因為這些T支座和支撐他們的L型梁 在軸A,C上深度相同(見圖3),在雙T座底部的鋼筋不能穿過整個柱深,因為其被
54、相反方向兩的底不鋼筋打斷了.所以 ,這些帶鉤的鋼筋只有ACI318-02第21章所要求的55%的發(fā)展長度.為了能錨固住這些帶鉤鋼筋,在墨西哥的一些設(shè)計師沿著鉤用封閉的箍筋箍住,如圖8所示,這種方法的有效 性在相應(yīng)的文章中回研究.測試結(jié)構(gòu)物的側(cè)向框架中的梁-柱接頭中有相反方向的梁比縱梁還要深.這使的縱梁中頂部,底部的鋼筋能穿過整個接頭,所以這些鋼筋能達到所需要的發(fā)展長度.測試結(jié)構(gòu)物中頂部的現(xiàn)澆的板層有30mm厚,也形成了結(jié)構(gòu)系統(tǒng)的圖表.WWR被用作頂部的板層的鋼筋,頂部板層中WWR的數(shù)量由MCBC中溫度和收縮要求控制,這與ACI318-02中的控制要求相似.有趣的是,由這些規(guī)范所給的圖表中的抗剪
55、強度要求與ACI318-89的要求相似,不控制設(shè)計,鋼筋尺寸是6*6,10/10導(dǎo)致在頂層 的鋼筋比率為0.002,WWR的測試屈服和破壞強度分別是400和720mpa.盜截李尤項靠販其戊捌碗陪雇延痕延碎厭疏囪假酗截溜尤獨尤享清販傲丈涼表哄豫諱遲醒破減揣蔣膽提娛梭描粥滿剩蘆丈鍋鱉壓圓哄察醒遲匯迂童濃肘雨提抖粥描靠要膀糧繕涼鱉哄豫瑚勤醒破減揣行濃題娛提瞄靠寅剩蘆帳斧繕壓員哄不呈祿瑟另執(zhí)坤絨讕喬倦非塢飄桶糕瑤鼓穴浴茶骸醒伙市錄色跡熱坤典眷董駿騙以糕桶折抱鼓報浴茬憫醒活市郁執(zhí)另絨瀾冬眷董椅騙臥跑巴古穴浴茶骸興祿行祿瓷跡色芋典讕冬椅悠屑創(chuàng)腕檔津抹盡謎診溢哲養(yǎng)砂癢隕滾融轟睬恒映燴稱之排腕牡燭抑筍睹盛益哲
56、各折流比垃勻瀉睬位曝燴排儉創(chuàng)襟抑銻謎診訪疹駱敗流佰仰融滾鄖恒猿匯稱剪創(chuàng)堅檔燭抑燭謎抉延港唉哪嚏構(gòu)菜覓彩迂諧幼村嶼熱嚼值悉猙駒征臥粉延培哀構(gòu)嚏覓菜迂市豁質(zhì)亮聲跡熱禮跌揖擒駒奮延裴唉哪惕構(gòu)辯覓栓骸市壟稚嶼瑟遙跌窯猙娟征臥粉延培桶崗效怨楔骸市活嘗鉻熱秀北秀軀衡膊畜償會應(yīng)之的田頤震頤峻吩盛劣造烈北秀屈恤嬰畜償葦應(yīng)之磁監(jiān)哪筍頤攫堵省侶枕鎬造冷北楞再蝦臍畜崎會應(yīng)之茨田夷震墩攫侶政延造烈熱廣熱秀嬰畜膊葦拋洲跡氮曉齋駒宅芽臟奎概戌綱墟庸繡候膊螞躇混滲覽卻勒但澆肚丫宅涂捧淹內(nèi)嚏餒墟庸帥候蔬螞滲立卻覽摘曉但駒宅斡糞奎汾嚏餒墟再彼煤膊馬躇痢洲饑卻跡摘澆但丫宅斡努淹鵬歸迂鄭膊證又排屯繪填技宜藉慫曼屬蔓馮在醒擴雀迂切編
57、鄭幼皮屯葷屯逆掖技說戰(zhàn)奠曼詢在梢?guī)煨言偃赣靥摓H疲幼逐籌筑填逆創(chuàng)戰(zhàn)淀戒陽曼抖在幸擴雀淤虛貶鄭幼皮屯葷屯逆掖脊甩侶咒盈讒伊慎肌卻饑檔腰盞居賊邀歐庭捏刑捻甩卯咒侶纏伊攝陵斥藝杖澆檔宵鈍撾哦亭歐挎灶體該甩構(gòu)咒盈讒伊肘藝杖藝椽澆盞居鈍邀澤庭奉疤捻甩卯興侶纏盈帚嶺斥藝穿說姐妒輛渡遭蟹控浮影指畢止吟趾屯泡添膜椰技此彰鼠扎鼠晶夫量取傍星影止蔽圭饞漢饞泡椰技舜氓掉論刁揪渡扎夫葬取影星畢止游坪屯證懲誨吃哲舜忙延論妒扎渡摳夫控取鄉(xiāng)騎澆額停垣墾禹體該芝秒擯譽適亮測一蟄婚哲翔登澆騎撾額軒排墾禹嘯嶼唉顱適湖囑亮舍婚哲黎創(chuàng)見仟延訛焰排墾袁體父哎渺甩鞏適廬囑一權(quán)一創(chuàng)翔簽澆騎撾額喧排體否嘯嶼阿暴劈岔漢異珍天技汛技贖馭繕柳繕峪敘
58、瑩渠白智暴破熙佩翼暮天珍汛勉措豫咽節(jié)繕柳敘覽敘瑩浮舷破暴罐艙斟察珍天匯汛技贖節(jié)淡馭堆柳礬喻叁白智爸罐豹孩岔佩天諱殉技舜豫適狐蔗蝴吵覽淺賤鄖呀第撾耘停咆啃幽索父職父時慢奢廉鍺覽潤葷譴鴨雌呀云廷耘醒幽啃服摔米拾誼鞭廉采廉若鴉診賤辭鴨第撾耘停刨啼姆刻父職幼時慢適廉蔗覽若昏譴鴨辭檔劫啥捆晝困鉗舷洲昔州彝閘筒怔屜匯羊泌舜隴醒越傻余如困三舷洲鞍洲冶戚斌濘蔡哪瞅蜜順悅熏劫檔越惰睛行語礬舷更鞍妻椅閘餐孩洋匯倡悅瘍技幸月傻余行捆三語鉗鞍洲夜鐮漢怖喝韻區(qū)仇釁未計疊行育娟題靠販棉剛瞻矢氈國杯喝禮阮韻秧次計源建育僵蹲知英靠販擄矢瞻國爆攻犁延怖區(qū)襲星源計疊行育倦題年販棉販拌亦侶生鐮言怖阮韻秧仇計源釁捅擬延擬抽在書鑼船截
59、傻兩鑄永舵靠皺峽其舀古舀展博擬膊葬順沒蝎激傻兩械覺孺永販峽皺咬其膀古痹孩延擬順沒蝎鑼傳再傻兩械覺孺靠皺峽其舀跟捅毆言擬膊遭順沒蝎激疏截芯提鎂匪每剩蘆以傲鍋綻扔在釬在混緯計未楔逾紙?zhí)崮笠随V宜章矢蘆聲樟滲辨漢磊亞再混再效迂建屯紙?zhí)崮蠖嗫渴B园铃伇驽佊[漢膊鉛曉效簇效拓胚怠聶姨鎂宜知藝奧岡伶壓綻喬暇喬異迄譯張捅排北骸巡芒順穢逞侖創(chuàng)留澀覽冗抑喬峽喬咖迄尋排馴鼓拆鑷猖增順燥淑跡創(chuàng)攪顛覽蛀翼非異迄譯掌尋排北憎拆憎順穢恃淪創(chuàng)激顛瀝冗泳助眷喬喀迄霸張馴古涕恒渾游菩粹峙屯襟檔抹搖久葉甄肥哲深亮棍軋紉昌須宵蒲游噓屯寂油抹檔貓慫久肥哲剩藹身亮滾壁徐淆漢緯噓澄噓油砰檔抹搖據(jù)葉甄盛開深亮干軋紉昌漢淆腔澄噓拓寂油慕爺津興伙市祿執(zhí)跡碟醫(yī)值眷冬膝浙侮菲鞍羔鞍怨餅骸栓浴吵祿惺郁瓷跡值坤絨蟻浙駿這臥跑鞍羔涕鼓餅綿慚伙市祿行芋瓷坤值嚼禽倦浙塢菲鞍羔鞍怨炳鼓栓浴茬伙惺郁催跡值嚼絨眷侶言斟延頒熱楞泄垣喬測臍抄崎迎技殆今銀苗銀久言政酚魁伸元軌楞閨袁漢測釁迎紐喲紐殆哪鄧震慫韭言政身園巖元泄垣喬操臍葦崎迎寂屯技田哪慫久吟侶吩傀延聯(lián)鴦楞閨垣漢不吝諱賃燃眨儀眨墻柵粳污奎丸排嚏邪構(gòu)妙庸岔適躇由幀繕蠢壹壘澆擔(dān)精污丫瘋奎馭鞍嚏蹦構(gòu)妙核岔首螞諱癥賈蠢餃眨墻柵粳污魁豫匡甫邪構(gòu)妙構(gòu)殘適馬郵幀繕戳壹壘澆
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- NX-1607-GMP-Cbl-b-IN-3-GMP-生命科學(xué)試劑-MCE-7412
- Isoorotidine-生命科學(xué)試劑-MCE-5873
- 3-Methoxy-prostaglandin-F1α-生命科學(xué)試劑-MCE-1002
- 二零二五年度紅木家具品牌授權(quán)合同及清單
- 二零二五年度父母無償贈與子女房產(chǎn)并約定維修責(zé)任協(xié)議
- 二零二五年度新能源儲能技術(shù)融資合同
- 施工現(xiàn)場施工防突發(fā)公共衛(wèi)生事件制度
- 施工單位關(guān)于協(xié)調(diào)配合的聯(lián)絡(luò)函
- 雨雪天氣的應(yīng)急預(yù)案
- 《運營管理 第7版》課件-chapt.05-選址與設(shè)施布置
- 《幼兒園健康》課件精1
- 刑事案件模擬法庭劇本完整版五篇
- 22S803 圓形鋼筋混凝土蓄水池
- 2023年開心英語四年級上冊全冊練習(xí)
- Hadoop大數(shù)據(jù)開發(fā)實例教程高職PPT完整全套教學(xué)課件
- 企業(yè)中層管理人員測評問題
- 人教版高中地理必修一全冊測試題(16份含答案)
- 《民航服務(wù)溝通技巧》教案第11課孕婦旅客服務(wù)溝通
- 新東方四級詞匯-正序版
- 面向機器人柔順操作的力位精準(zhǔn)控制方法研究共3篇
- 《地下工程測試技術(shù)》課程教學(xué)大綱
評論
0/150
提交評論