橋梁畢業(yè)設(shè)計(jì)外文原文及翻譯_第1頁(yè)
橋梁畢業(yè)設(shè)計(jì)外文原文及翻譯_第2頁(yè)
橋梁畢業(yè)設(shè)計(jì)外文原文及翻譯_第3頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、外文文獻(xiàn)翻譯, and were exemplified in works and applications by Leonardo da Vinci,Cardeno,and Galileo.In the fifteenth and sixteenth century, engineers seemed to be unaware of this record , and relied solely on experience and tradition for building bridges and aqueducts .The state of the art changed rapid

2、ly toward the end of the seventeenth century when Leibnitz, Newton, and Bernoulli introduced mathematical formulations. Published works by Lahire (1695)and Belidor (1792) about the theoretical analysis of structures provided the basis in the field of mechanics of materials .Kuzmanovic(1977) focuses

3、on stone and wood as the first bridge-building materials. Iron was introduced during the transitional period from wood to steel .According to recent records , concrete was used in France as early as 1840 for a bridge 39 feet (12 m) long to span the Garoyne Canal at Grisoles, but reinforced concrete

4、was not introduced in bridge construction until the beginning of this century . Prestressed concrete was first used in 1927.Stone bridges of the arch type (integrated superstructure and substructure) were constructed in Rome and other European cities in the middle ages . These arches were half-circu

5、lar , with flat arches beginning to dominate bridge work during the Renaissance period. This concept was markedly improved at the end of the eighteenth century and found structurally adequate to accommodate future railroad loads . In terms of analysis and use of materials , stone bridges have not ch

6、anged much ,but the theoretical treatment was improved by introducing the pressure-line concept in the early 1670s(Lahire, 1695) . The arch theory was documented in model tests where typical failure modes were considered (Frezier,1739).Culmann(1851) introduced the elastic center method for fixed-end

7、 arches, and showed that three redundant parameters can be found by the use of three equations of coMPatibility.Wooden trusses were used in bridges during the sixteenth century when Palladio built triangular frames for bridge spans 10 feet long . This effort also focused on the three basic principle

8、s og bridge design : convenience(serviceability) ,appearance , and endurance(strength) . several timber truss bridges were constructed in western Europe beginning in the 1750s with spans up to 200 feet (61m) supported on stone substructures .Significant progress was possible in the United States and

9、 Russia during the nineteenth century ,prompted by the need to cross major rivers and by an abundance of suitable timber . Favorable economic considerations included initial low cost and fast construction .The transition from wooden bridges to steel types probably did not begin until about 1840 ,alt

10、hough the first documented use of iron in bridges was the chain bridge built in 1734 across the Oder River in Prussia . The first truss completely made of iron was in 1840 in the United States , followed by England in 1845 , Germany in 1853 , and Russia in 1857 . In 1840 , the first iron arch truss

11、bridge was built across the Erie Canal at Utica .The Impetus of Analysis The theory of structures The theory of structures ,developed mainly in the ninetheenth century,focused on truss analysis, with the first book on bridges written in 1811. The Warren triangular truss was introduced in 1846 , supp

12、lemented by a method for calculating the correcet forces .I-beams fabricated from plates became popular in England and were used in short-span bridges.In 1866, Culmann explained the principles of cantilever truss bridges, and one year later the first cantilever bridge was built across the Main River

13、 in Hassfurt, Germany, with a center span of 425 feet (130m) . The first cantilever bridge in the United States was built in 1875 across the Kentucky River.A most impressive railway cantilever bridge in the nineteenth century was the First of Forth bridge , built between 1883 and 1893 , with span ma

14、gnitudes of 1711 feet (521.5m).At about the same time , structural steel was introduced as a prime material in bridge work , although its quality was often poor . Several early examples are the Eads bridge in St.Louis ; the Brooklyn bridge in New York ; and the Glasgow bridge in Missouri , all compl

15、eted between 1874 and 1883.Among the analytical and design progress to be mentioned are the contributions of Maxwell , particularly for certain statically indeterminate trusses ; the books by Cremona (1872) on graphical statics; the force method redefined by Mohr; and the works by Clapeyron who intr

16、oduced the three-moment equations.The Impetus of New MaterialsSince the beginning of the twentieth century , concrete has taken its place as one of the most useful and important structural materials . Because of the coMParative ease with which it can be molded into any desired shape , its structural

17、 uses are almost unlimited . Wherever Portland cement and suitable aggregates are available , it can replace other materials for certain types of structures, such as bridge substructure and foundation elements .In addition , the introduction of reinforced concrete in multispan frames at the beginnin

18、g of this century imposed new analytical requirements . Structures of a high order of redundancy could not be analyzed with the classical methods of the nineteenth century .The importance of joint rotation was already demonstrated by Manderla (1880) and Bendixen (1914) , who developed relationships

19、between joint moments and angular rotations from which the unknown moments can be obtained ,the so called slope-deflection method .More simplifications in frame analysis were made possible by the work of Calisev (1923) , who used successive approximations to reduce the system of equations to one sim

20、ple expression for each iteration step . This approach was further refined and integrated by Cross (1930) in what is known as the method of moment distribution .One of the most import important recent developments in the area of analytical procedures is the extension of design to cover the elastic-p

21、lastic range , also known as load factor or ultimate design. Plastic analysis was introduced with some practical observations by Tresca (1846) ; and was formulated by Saint-Venant (1870) , The concept of plasticity attracted researchers and engineers after World War I , mainly in Germany , with the

22、center of activity shifting to England and theUnited States after World War n .The probabilistic approach is a new design concept that is expected to replace the classical deterministic methodology.A main step forward was the 1969 addition of the Federal Highway Adiministration (FHWA)”Criteria for R

23、einforced Concrete Bridge Members “ that covers strength and serviceability at ultimate design . This was prepared for use in conjunction with the 1969 American Association of State Highway Offficials (AASHO) Standard Specification, and was presented in a format that is readily adaptable to the deve

24、lopment of ultimate design specifications .According to this document , the proportioning of reinforced concrete members ( including columns ) may be limited by various stages of behavior : elastic , cracked , and ultimate . Design axial loads , or design shears . Structural capacity is the reaction

25、 phase , and all calculated modified strength values derived from theoretical strengths are the capacity values , such as moment capacity ,axial load capacity ,or shear capacity .At serviceability states , investigations may also be necessary for deflections , maximum crack width , and fatigue .Brid

26、ge TypesA notable bridge type is the suspension bridge , with the first example built in the United States in 1796. Problems of dynamic stability were investigated after the Tacoma bridge collapse , and this work led to significant theoretical contributions Steinman ( 1929 ) summarizes about 250 sus

27、pension bridges built throughout the world between 1741 and 1928 .With the introduction of the interstate system and the need to provide structures at grade separations , certain bridge types have taken a strong place in bridge practice. These include concrete superstructures (slab ,T-beams,concrete

28、 box girders ), steel beam and plate girders , steel box girders , composite construction , orthotropic plates , segmental construction , curved girders ,and cable-stayed bridges . Prefabricated members are given serious consideration , while interest in box sections remains strong .Bridge Appearanc

29、e and AestheticsGrimm ( 1975 ) documents the first recorded legislative effort to control the appearance of the built environment . This occurred in 1647 when the Council of New Amsterdam appointed three officials . In 1954 , the Supreme Court of the United States held that it is within the power of

30、 the legislature to determine that communities should be attractive as well as healthy , spacious as well as clean , and balanced as well as patrolled . The Environmental Policy Act of 1969 directs all agencies of the federal government to identify and develop methods and procedures to ensure that p

31、resently unquantified environmental amentities and values are given appropriate consideration in decision making along with economic and technical aspects .Although in many civil engineering works aesthetics has been practiced almost intuitively , particularly in the past , bridge engineers have not

32、 ignored or neglected the aesthetic disciplines .Recent research on the subject appears to lead to a rationalized aesthetic design methodology (Grimm and Preiser , 1976 ) .Work has been done on the aesthetics of color ,light ,texture , shape , and proportions , as well as other perceptual modalities

33、 , and this direction is both theoretically and empirically oriented .Aesthetic control mechanisms are commonly integrated into the land-use regulations and design standards . In addition to concern for aesthetics at the state level , federal concern focuses also on the effects of man-constructed en

34、vironment on human life , with guidelines and criteria directed toward improving quality and appearance in the design process . Good potential for the upgrading of aesthetic quality in bridge superstructures and substructures can be seen in the evaluation structure types aimed at improving overall a

35、ppearance .LOADS AND LOADING GROUPSThe loads to be considered in the design of substructures and bridge foundations include loads and forces transmitted from the superstructure, and those acting directly on the substructure and foundation .AASHTO loads . Section 3 of AASHTO specifications summarizes

36、 the loads and forces to be considered in the design of bridges (superstructure and substructure ) . Briefly , these are dead load ,live load , iMPact or dynamic effect of live load , wind load , and other forces such as longitudinal forces , centrifugal force ,thermal forces , earth pressure , buoy

37、ancy , shrinkage and long term creep , rib shortening , erection stresses , ice and current pressure , collision force , and earthquake stresses .Besides these conventional loads that are generally quantified , AASHTO also recognizes indirect load effects such as friction at expansion bearings and s

38、tresses associated with differential settlement of bridge components .The LRFD specifications divide loads into two distinct categories : permanent and transient .Permanent loadsDead Load : this includes the weight DC of all bridge components , appurtenances and utilities, wearing surface DW and fut

39、ure overlays , and earth fill EV. Both AASHTO and LRFD specifications give tables summarizing the unit weights of materials commonly used in bridge work .Transient LoadsVehicular Live Load (LL)Vehicle loading for short-span bridges :considerable effort has been made in the United States and Canada t

40、o develop a live load model that can represent the highway loading more realistically than the H or the HS AASHTO models . The current AASHTO model is still the applicable loading.橋梁工程和橋梁美學(xué)橋梁工程的發(fā)展概況早在公元前1世紀(jì),Marcus Vitrucios Pollio 的著作中就有關(guān)于建筑材料和結(jié)構(gòu)類型的記載和 評(píng)述。后來(lái)古希臘人創(chuàng)立了靜力學(xué)的基本原理, Leonardo da Vinci 、Carden

41、o 和 Galileo 等 人在工作和應(yīng)用中也證實(shí)了這些原理的正確性。 而在 15世紀(jì)至 16世紀(jì)期間, 工程師們似乎 并沒有注意到這些文字記載,只是單憑經(jīng)驗(yàn)和傳統(tǒng)來(lái)建造橋梁和渡槽。到了17 世紀(jì)末,隨著 Leibnitz 、Newton 和 Bernoulli 的數(shù)學(xué)理論的創(chuàng)立, 橋梁建筑技術(shù)得到了快速發(fā)展。 Lahire (1695)和belidor( 1729)出版的關(guān)于結(jié)構(gòu)理論分析的著作為材料力學(xué)領(lǐng)域奠定了基礎(chǔ)。Kuzmanovic (1977)指出,石材和木材是橋梁建筑最早采用的材料。在從木材到鋼材的轉(zhuǎn) 變過程中,鐵作為一種過渡材料被用于橋梁建筑中。根據(jù)近期的記載。早在1840 年,

42、法國(guó)就在 Grisoles 建造了一座跨度為 39英尺( 12米)的橫跨 Garoyne 運(yùn)河的混凝土橋梁,但 鋼筋混凝土橋直到本世紀(jì)初才出現(xiàn),而預(yù)應(yīng)力混凝土到 1 927年才開始使用。早在中世紀(jì), 羅馬和歐洲的其他一些城市開始建造集上下部結(jié)構(gòu)于一體的半圓弧石拱橋,而文藝復(fù)興時(shí)期則是坦拱逐漸占主導(dǎo)地位。這種觀念在 18 世紀(jì)末有了明顯的改進(jìn),并發(fā)現(xiàn)其 在結(jié)構(gòu)上能適應(yīng)后來(lái)的鐵路荷載。在材料的分析和使用上,石拱橋至今沒有發(fā)生大的變化,但是由于在17世紀(jì)70年代初期(Lahire,1965 )引進(jìn)了壓力線的概念,使得拱橋的理論分析 得到了改進(jìn)。 通過模型試驗(yàn), 有關(guān)拱結(jié)構(gòu)的主要失效形式的理論得到了證

43、實(shí) (Frezier ,1739)。 對(duì)于無(wú)鉸拱, Culmann (1851 ) 引進(jìn)了彈性中心的方法,顯示了可用三個(gè)協(xié)調(diào)方程求解三個(gè) 多余參數(shù)。當(dāng) palladio 建造了一座跨度為 10英尺的三角形木制框架橋后, 16世紀(jì)開始,木桁架在橋梁 中得到應(yīng)用。這些設(shè)計(jì)同樣遵循橋梁設(shè)計(jì)的三個(gè)基本原則:方便(實(shí)用性)、美觀和耐久性(強(qiáng)度)。 18 世紀(jì) 50 年代西歐建造了若干座支承于石制橋墩上的木桁架橋,其跨度達(dá)到 200英尺(61 米)。 19世紀(jì)期間,美國(guó)和俄羅斯由于其跨越主要河流的需要,而且兩國(guó)都具有豐 富的適用于建橋的木材資源, 因此木制橋梁在美、 俄兩國(guó)有可能取得更為顯著的成績(jī)。 木制

44、 橋梁具有良好的經(jīng)濟(jì)性,因?yàn)槠涑跗谕顿Y較低,施工速度較快。盡管有文獻(xiàn)記載,早在1734年,在普魯士就修建了第一座橫跨Oder河的鐵鏈橋,但從木橋到鋼橋的過渡大概開始于 1840 年。美國(guó)于 1840 年建成了第一座全鐵桁架橋, 其后,英格蘭、 德國(guó)和俄羅斯分別于 1845 年、 1853年和 1857年也建成了鐵桁架橋。 1840 年,第一座鐵桁 架拱橋出現(xiàn)在 Utica 的 Erie 運(yùn)河上。理論分析的推動(dòng)作用主要從 19 世紀(jì)發(fā)展起來(lái)的機(jī)構(gòu)分析理論著重于桁架的分析,首部關(guān)于橋梁工程的著作于 1811年出版。 1846年出現(xiàn)了一種 Warren 三角形桁架和計(jì)算這種桁架精確內(nèi)力的分析方法。

45、用板件組合而成的工字形梁在英國(guó)逐漸普及并在小跨度橋梁中得到應(yīng)用。1866 年 Culmann 闡述了懸臂桁架橋的原理,一年后在德國(guó)的 Hassfurt 的 Main 河上就建造 了首座主跨跨度達(dá) 425 英尺( 130 米)的懸臂梁橋。美國(guó)的首座懸臂梁橋于 1875 年建于 Kentucky 河上。 19 世紀(jì)最引人注目的鐵路懸臂梁橋要數(shù)Firth of Forth 橋, 此橋建于 1883 年至 1890年間,跨度達(dá) 1,711英尺( 521.5米)大約就在這一時(shí)期,結(jié)構(gòu)鋼在橋梁工程中作 為一種主要材料被推廣應(yīng)用,盡管此時(shí)鋼材的性能大都較差。幾個(gè)早期的工程實(shí)例是:(1)St.Louis 的

46、Eads 橋;( 2)New York 的 Brooklyn 橋;( 3)Missouri 的 Glasgow 大橋,這些 橋都建于 1874 年至 1883 年間。談起對(duì)結(jié)構(gòu)分析河設(shè)計(jì)理論的改進(jìn)特別應(yīng)該提到: Maxwell 所作的貢獻(xiàn),尤其是他在超靜 定桁架方面的工作; Cremona 關(guān)于圖解靜力學(xué)的著作( 1872);由 Mohr 重新定義的力法以 及 Clapeyron 提出的三彎矩方程新材料的推動(dòng)作用自從 20 世紀(jì)初起,混凝土就是一直是最有效和最重要的建筑材料之一。由于混凝土可以較 容易地澆注成各種形狀的結(jié)構(gòu)物, 因此它在建筑上的使用價(jià)值幾乎是無(wú)限的。 只要有普通水 泥和合適的骨

47、料混凝土就可以替代其他材料建造某些類型的結(jié)構(gòu), 諸如橋梁下部結(jié)構(gòu)及基礎(chǔ) 等。另外,在本世紀(jì)初, 鋼筋混凝土在多跨框架結(jié)構(gòu)中的應(yīng)用對(duì)結(jié)構(gòu)分析提出了新的分析要求用Saint-Venant (1870) 系統(tǒng)地闡述了這種分析方法。第一次世界大戰(zhàn)以后,塑性的概念吸引著 二次世界大戰(zhàn)后, 隨著科研學(xué)術(shù)重心的 概率設(shè)計(jì)法是一種新的設(shè)計(jì)方法, 這19 世紀(jì)的古典分析方法不能用來(lái)分析高次靜定結(jié)構(gòu)。 Manderla (1880)和 Bendixen (1914) 論 證了節(jié)點(diǎn)轉(zhuǎn)角的重要性,提出了節(jié)點(diǎn)彎矩和轉(zhuǎn)角之間的關(guān)系,從而可求解未知的節(jié)點(diǎn)彎矩, 這種方法被稱為轉(zhuǎn)角撓度法。 Calisev (1923) 的工

48、作使得框架結(jié)構(gòu)的分析有可能進(jìn)一步簡(jiǎn) 化,他利用逐步近似的方法將方程組的求解簡(jiǎn)化為一個(gè)簡(jiǎn)單表達(dá)式的迭代計(jì)算。 Cross (1930) 進(jìn)一步改進(jìn)和歸納了這種方法,從而形成了彎矩分配法。 在結(jié)構(gòu)分析領(lǐng)域的近期發(fā)展中最重要的改進(jìn)之一是將設(shè)計(jì)的范圍延伸到彈塑性范圍, 即所謂 的荷載因子法或極限狀態(tài)設(shè)計(jì)法。 Tresca (1846) 根據(jù)一些世紀(jì)觀察結(jié)果提出了塑性分析法, 研究人員和工程師們的注意力, 開始主要是在德國(guó)。 轉(zhuǎn)移, 英國(guó)和美國(guó)的科研人員對(duì)此進(jìn)行了廣泛的研究。 種方法有望替代傳統(tǒng)的確定性方法。FHWA )的“鋼筋混凝土橋梁勾踐設(shè)計(jì) 這本設(shè)計(jì)準(zhǔn)則是與 “美國(guó)各州公路工作 它的表達(dá)方式使其很

49、容易適應(yīng)極限狀一個(gè)主要的進(jìn)步是 1969 版的美國(guó)聯(lián)邦公路管理局(準(zhǔn)則” 中包括了強(qiáng)度和正常使用的極限狀態(tài)設(shè)計(jì)法。者協(xié)會(huì)( AASHO )” 1969 年的設(shè)計(jì)規(guī)范聯(lián)合使用的, 態(tài)設(shè)計(jì)規(guī)范的發(fā)展。 根據(jù)這本設(shè)計(jì)準(zhǔn)則, 鋼筋混凝土勾踐 (包括柱)的配料可以通過其各個(gè) 階段的工作性能來(lái)限定: 彈性的、帶裂縫工作的極限狀態(tài)的。 設(shè)計(jì)是荷載作用效應(yīng),所有根 據(jù)作用荷載計(jì)算所得的量叫做設(shè)計(jì)值,如:設(shè)計(jì)彎矩、設(shè)計(jì)軸載或或設(shè)計(jì)剪力。結(jié)構(gòu)的承載 力被認(rèn)為是結(jié)構(gòu)抗力方面的參數(shù), 所有根據(jù)材料的理論強(qiáng)度計(jì)算得來(lái)并經(jīng)過修正得強(qiáng)度計(jì)算 值叫做結(jié)構(gòu)抗力值,如:彎矩抗力值(抵抗彎矩) ,軸力抗力值或剪力抗力值。在正常使用

50、 極限狀態(tài)下,需驗(yàn)算構(gòu)件得撓度、最大裂縫寬度和疲勞強(qiáng)度。橋型 一種值得注意得橋型是吊橋,首座吊橋 1796 年建于美國(guó)。隨著 Tacoma 大橋得跨塌,動(dòng)力 穩(wěn)定被作為問題來(lái)研究, 并取得了顯著得理論成果。 Steinman (1929) 總結(jié)了全世界建于 1741 年至 1928 年間得大約 250 座吊橋。隨著州際體系得建立和結(jié)構(gòu)等級(jí)分類的需要, 某些橋型在橋梁界占有重要的地位。 這些橋型 包括混凝土上部結(jié)構(gòu)(板橋、 T 梁橋、混凝土箱梁橋) 、鋼梁橋、鋼箱梁橋、組合界哦故、 正交異性板結(jié)構(gòu)、分段施工的結(jié)構(gòu)、 曲線梁橋和斜拉橋。 預(yù)制構(gòu)件受到了足夠的重視, 箱型 截面梁也占有重要的地位。橋

51、梁的外觀及橋梁美學(xué)Grimm(1975) 考證了歷史上首例關(guān)于控制建筑環(huán)境美學(xué)的立法記錄,這發(fā)生在1647 年,當(dāng)時(shí)的新阿姆斯特丹委員會(huì)派三名官員負(fù)責(zé)此事。 1954 年,美國(guó)聯(lián)邦最高法院認(rèn)為,立法機(jī) 關(guān)有權(quán)決定公共場(chǎng)所不但要有利于公眾健康,還要做到賞心悅目;不但要干凈,還要寬敞; 不但要通暢,還要布局均衡。 1969 年的環(huán)境政策法規(guī)要求聯(lián)邦政府各機(jī)構(gòu)對(duì)目前尚未量化 的環(huán)境舒適性指標(biāo)提出評(píng)價(jià)方法,在考慮技術(shù)經(jīng)濟(jì)指標(biāo)的同時(shí),對(duì)美觀給予適當(dāng)?shù)目紤]。 盡管在很多土木工程結(jié)構(gòu)中, 幾乎是憑直觀考慮美學(xué)問題, 尤其在過去, 但橋梁工程師們并 沒有忽略美學(xué)方面的訓(xùn)練。最近關(guān)于的研究似乎可以得到一種美學(xué)設(shè)

52、計(jì)方法論( Grimm 和Preiser,1976)。有關(guān)顏色、光線、質(zhì)地、形狀、比例以及其他感知形態(tài)的美學(xué)研究已經(jīng)展開, 這個(gè)方向無(wú)論在理論上還是經(jīng)驗(yàn)上都是明確的。美學(xué)控制機(jī)制一般都與土地使用規(guī)則和設(shè)計(jì)標(biāo)準(zhǔn)結(jié)合在一起。除了州政府關(guān)心結(jié)構(gòu)美學(xué)以 外,聯(lián)邦政府將主要精力集中在考慮人工環(huán)境對(duì)人類生活的影響上,以及制定準(zhǔn)則和規(guī)范以指導(dǎo)設(shè)計(jì)者在設(shè)計(jì)過程中改進(jìn)質(zhì)量和外觀。 從為了改進(jìn)結(jié)構(gòu)整體外觀而進(jìn)行的橋型評(píng)估中可 以看出,提高橋梁結(jié)構(gòu)美學(xué)質(zhì)量的潛力還是很大的。荷載及荷載組合在橋梁下部結(jié)構(gòu)和基礎(chǔ)設(shè)計(jì)中要考慮的荷載包括: 從上部結(jié)構(gòu)傳下來(lái)的荷載和直接作用于下 部結(jié)構(gòu)的基礎(chǔ)的荷載。AASHTO 荷載 AAS

53、HTO 規(guī)范第三部分總結(jié)了橋梁設(shè)計(jì)(上、下部結(jié)構(gòu))要考慮的荷載和 作用力。主要有:恒載、活載、活載沖擊力或動(dòng)力作用、風(fēng)荷載以及其他力如縱向力、 離心力、溫度力、土壓力、浮力收縮及徐變、拱肋縮短、安裝應(yīng)力、冰及水流壓力、沖撞力 及地震應(yīng)力。除了這些通常能夠量化大的典型荷載外,AASHTO 同樣認(rèn)識(shí)到諸如活動(dòng)支座處產(chǎn)生的摩擦以及由于橋梁勾踐的沉降差而產(chǎn)生的應(yīng)力等間接荷載效應(yīng)。LRFD 規(guī)范將荷載劃分為截然不同的兩種:長(zhǎng)期荷載和短期荷載。 長(zhǎng)期荷載荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單

54、位重量。 短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種比H或HS AASHTO模型更實(shí)際的代表高速公路活荷載的模型。到目前為止,AASHTO 模型仍被廣泛采用。長(zhǎng)期荷載荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單位重量。短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種比 H 或 HS AASHTO 模 型更實(shí)際的代表高速公路活荷載的模型。到目前為止,AASHTO 模型仍被廣泛采用。長(zhǎng)期荷載荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的

55、凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單位重量。 短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種比 H 或 HS AASHTO 模 型更實(shí)際的代表高速公路活荷載的模型。到目前為止, AASHTO 模型仍被廣泛采用。 長(zhǎng)期荷載 荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單位重量。 短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種比 H 或 HS AASHTO 模 型更實(shí)際的代表高

56、速公路活荷載的模型。到目前為止, AASHTO 模型仍被廣泛采用。長(zhǎng)期荷載 荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單位重量。 短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種比 H 或 HS AASHTO 模 型更實(shí)際的代表高速公路活荷載的模型。到目前為止, AASHTO 模型仍被廣泛采用。長(zhǎng)期荷載 荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單位重量。

57、 短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種比 H 或 HS AASHTO 模 型更實(shí)際的代表高速公路活荷載的模型。到目前為止, AASHTO 模型仍被廣泛采用。長(zhǎng)期荷載 荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單位重量。 短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種比 H 或 HS AASHTO 模 型更實(shí)際的代表高速公路活荷載的模型。到目前為止, AASHTO 模型仍被廣泛采用。長(zhǎng)期荷載 荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備

58、、道路面層的凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單位重量。 短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種比 H 或 HS AASHTO 模 型更實(shí)際的代表高速公路活荷載的模型。到目前為止, AASHTO 模型仍被廣泛采用。 長(zhǎng)期荷載 荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單位重量。 短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種比 H 或 HS AASHTO 模 型更

59、實(shí)際的代表高速公路活荷載的模型。到目前為止, AASHTO 模型仍被廣泛采用。長(zhǎng)期荷載 荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單位重量。 短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種比 H 或 HS AASHTO 模 型更實(shí)際的代表高速公路活荷載的模型。到目前為止, AASHTO 模型仍被廣泛采用。 長(zhǎng)期荷載 荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的凈重及未來(lái)鋪裝重量、填土恒載。AASHTO 及 LRFD 規(guī)范都給出了表格,總結(jié)了橋梁工程重常用才兩的單位重量。 短期荷載汽車荷載 小跨度橋梁的汽車荷載: 美國(guó)和加拿大已致力于發(fā)展一種

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論