正弦余弦應(yīng)用舉例_第1頁
正弦余弦應(yīng)用舉例_第2頁
正弦余弦應(yīng)用舉例_第3頁
正弦余弦應(yīng)用舉例_第4頁
正弦余弦應(yīng)用舉例_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、新課標(biāo)人教版課件系列新課標(biāo)人教版課件系列高中數(shù)學(xué)必修必修51.2.1正弦余弦應(yīng)用舉例審校:王偉教學(xué)目標(biāo)教學(xué)目標(biāo) 1、能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)測量距離的實(shí)際問題,了解常用的測量相關(guān)術(shù)語 2、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值;同時(shí)培養(yǎng)學(xué)生運(yùn)用圖形、數(shù)學(xué)符號(hào)表達(dá)題意和應(yīng)用轉(zhuǎn)化思想解決數(shù)學(xué)問題的能力 二、教學(xué)重點(diǎn)、難點(diǎn) 教學(xué)重點(diǎn):由實(shí)際問題中抽象出一個(gè)或幾個(gè)三角形,然后逐個(gè)解決三角形,得到實(shí)際問題的解 教學(xué)難點(diǎn):根據(jù)題意建立數(shù)學(xué)模型,畫出示意圖 高度高度角度角度距離距離例例1、設(shè)、設(shè)A、B兩點(diǎn)在河的兩岸,要測量兩點(diǎn)之間的距離。兩點(diǎn)在河的兩岸,要測量兩點(diǎn)之間的距離。

2、測量者在測量者在A的同測,在所在的河岸邊選定一點(diǎn)的同測,在所在的河岸邊選定一點(diǎn)C,測出測出AC的距離是的距離是55cm,BAC51o, ACB75o,求,求A、B兩點(diǎn)間的距離(精確到兩點(diǎn)間的距離(精確到0.1m)分析:已知兩角一邊,可以用正弦定理解三角形分析:已知兩角一邊,可以用正弦定理解三角形BACCABsinsin解:根據(jù)正弦定理,得解:根據(jù)正弦定理,得ABCACACBABsinsin)(7 .6554sin75sin55)7551180sin(75sin55sinsin55sinsinmABCACBABCACBACAB答:答:A,B兩點(diǎn)間的距離為兩點(diǎn)間的距離為65.7米。米。例例2、A、

3、B兩點(diǎn)都在河的對(duì)岸(不可到達(dá)),設(shè)計(jì)一種兩點(diǎn)都在河的對(duì)岸(不可到達(dá)),設(shè)計(jì)一種測量兩點(diǎn)間的距離的方法。測量兩點(diǎn)間的距離的方法。分析:用例分析:用例1的方法,可以計(jì)算出河的這一岸的一的方法,可以計(jì)算出河的這一岸的一點(diǎn)點(diǎn)C到對(duì)岸兩點(diǎn)的距離,再測出到對(duì)岸兩點(diǎn)的距離,再測出BCA的大小,的大小,借助于余弦定理可以計(jì)算出借助于余弦定理可以計(jì)算出A、B兩點(diǎn)間的距離。兩點(diǎn)間的距離。解:測量者可以在河岸邊選定兩點(diǎn)解:測量者可以在河岸邊選定兩點(diǎn)C、D,測得,測得CD=a,并并且在且在C、D兩點(diǎn)分別測得兩點(diǎn)分別測得BCA=, ACD=, CDB=, BDA=.在在ADC和和BDC中,應(yīng)用正弦定理得中,應(yīng)用正弦定理

4、得)sin()sin()(180sin)sin(aaAC)sin(sin)(180sinsinaaBC計(jì)算出計(jì)算出AC和和BC后,再在后,再在ABC中,應(yīng)用余弦定理計(jì)中,應(yīng)用余弦定理計(jì)算出算出AB兩點(diǎn)間的距離兩點(diǎn)間的距離cos222BCACBCACAB練習(xí)練習(xí)1、一艘船以、一艘船以32.2n mile / hr的速度向正的速度向正北航行。在北航行。在A處看燈塔處看燈塔S在船的北偏東在船的北偏東20o的的方向,方向,30min后航行到后航行到B處,在處,在B處看燈塔處看燈塔在船的北偏東在船的北偏東65o的方向,已知距離此燈塔的方向,已知距離此燈塔6.5n mile 以外的海區(qū)為航行安全區(qū)域,這以

5、外的海區(qū)為航行安全區(qū)域,這艘船可以繼續(xù)沿正北方向航行嗎?艘船可以繼續(xù)沿正北方向航行嗎?北方向航行答:此船可以繼續(xù)沿正向航行此船可以繼續(xù)沿正北方則的距離為到直線設(shè)點(diǎn),由正弦定理得,中,解:在milenhmilenSBhhABSmilenABSBSSBAASB5.6)(06.765sin,)(787.745sin20sin1.1645sin20sin45115練習(xí)練習(xí)2自動(dòng)卸貨汽車的車廂采用液壓機(jī)構(gòu)。設(shè)計(jì)時(shí)需要計(jì)算自動(dòng)卸貨汽車的車廂采用液壓機(jī)構(gòu)。設(shè)計(jì)時(shí)需要計(jì)算油泵頂桿油泵頂桿BC的長度已知車廂的最大仰角是的長度已知車廂的最大仰角是60,油泵頂點(diǎn),油泵頂點(diǎn)B與車廂支點(diǎn)與車廂支點(diǎn)A之間的距離為之間的距

6、離為1.95m,AB與水平線之間的夾角為與水平線之間的夾角為62020,AC長為長為1.40m,計(jì)算,計(jì)算BC的長(精確到的長(精確到0.01m0.01m) 0260 (1 1)什么是最大仰角?)什么是最大仰角? 最大角度最大角度最大角度最大角度最大角度最大角度最大角度最大角度 (2 2)例題中涉及一個(gè)怎樣的三角)例題中涉及一個(gè)怎樣的三角形?形? 在在ABC中已知什么,要求什么?中已知什么,要求什么?CAB練習(xí)練習(xí)2自動(dòng)卸貨汽車的車廂采用液壓機(jī)構(gòu)。設(shè)計(jì)時(shí)需要計(jì)算自動(dòng)卸貨汽車的車廂采用液壓機(jī)構(gòu)。設(shè)計(jì)時(shí)需要計(jì)算油泵頂桿油泵頂桿BC的長度已知車廂的最大仰角是的長度已知車廂的最大仰角是60,油泵頂點(diǎn),

7、油泵頂點(diǎn)B與車廂支點(diǎn)與車廂支點(diǎn)A之間的距離為之間的距離為1.95m,AB與水平線之間的夾角為與水平線之間的夾角為62020,AC長為長為1.40m,計(jì)算,計(jì)算BC的長(精確到的長(精確到0.01m0.01m) 0260 最大角度最大角度最大角度最大角度最大角度最大角度最大角度最大角度 已知已知ABC中中AB1.95m,AC1.40m, 夾角夾角CAB6620,求,求BC解:由余弦定理,得解:由余弦定理,得571. 3 0266cos40. 195. 1240. 195. 1 cos2 22222AACABACABBC)(89. 1m BC答:頂桿答:頂桿BCBC約長約長1.89m。 CAB實(shí)際問題實(shí)際問題抽象概括抽象概括示意圖示意圖數(shù)學(xué)模型數(shù)學(xué)模型推理推理演算演算數(shù)學(xué)模型的解數(shù)學(xué)模型的解實(shí)際問題的解實(shí)際問題的解還原說明還原說明解應(yīng)用題的基本思路解應(yīng)用題的基本思路已知已知ABC中,三個(gè)內(nèi)角中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別是的對(duì)邊分別是a,b,c,若若ABC的面積為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論