版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知m為實(shí)數(shù),直線:,:,則“”是“”的( )A充要條件B充分不必要條件C必要不充分條件D既不充分也不必要條件2關(guān)于函數(shù),有下列三個(gè)結(jié)論:是的一個(gè)周期;在上單調(diào)遞增;的值域?yàn)?則上述結(jié)論中,正確的個(gè)數(shù)為()ABCD3若直線與曲線相切,則( )A3BC2D4點(diǎn)在所在的平面內(nèi),且,則( )ABCD5若直線與圓相交所得弦長為,則( )A1B2CD36已知集合,若,則( )ABCD7已知、分別為雙曲線:(,)的左、右焦點(diǎn),過的直線交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,則的離心率為( )A2BCD8拋
3、擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是( )ABCD9當(dāng)時(shí),函數(shù)的圖象大致是( )ABCD10如圖,點(diǎn)E是正方體ABCD-A1B1C1D1的棱DD1的中點(diǎn),點(diǎn)F,M分別在線段AC,BD1(不包含端點(diǎn))上運(yùn)動(dòng),則( )A在點(diǎn)F的運(yùn)動(dòng)過程中,存在EF/BC1B在點(diǎn)M的運(yùn)動(dòng)過程中,不存在B1MAEC四面體EMAC的體積為定值D四面體FA1C1B的體積不為定值11已知函數(shù)()的部分圖象如圖所示.則( )ABCD12已知雙曲線的左,右焦點(diǎn)分別為、,過的直線l交雙曲線的右支于點(diǎn)P,以雙曲線的實(shí)軸為直徑的圓與直線l相切,切點(diǎn)為H,若,則雙曲線C的離心率
4、為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若向量滿足,則實(shí)數(shù)的取值范圍是_.14已知,且,則的最小值是_.15若x,y滿足,且y1,則3x+y的最大值_16直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點(diǎn),則的面積為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).()求在點(diǎn)處的切線方程;()已知在上恒成立,求的值.()若方程有兩個(gè)實(shí)數(shù)根,且,證明:.18(12分)已知函數(shù)與的圖象關(guān)于直線對(duì)稱. (為自然對(duì)數(shù)的底數(shù))(1)若的圖象在點(diǎn)處的切線經(jīng)過點(diǎn),求的值;(2)若不等式恒成立,求正整數(shù)的最小值.19(12分)在
5、平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,為橢圓上兩點(diǎn),圓.(1)若軸,且滿足直線與圓相切,求圓的方程;(2)若圓的半徑為,點(diǎn)滿足,求直線被圓截得弦長的最大值.20(12分)某公司為了鼓勵(lì)運(yùn)動(dòng)提高所有用戶的身體素質(zhì),特推出一款運(yùn)動(dòng)計(jì)步數(shù)的軟件,所有用戶都可以通過每天累計(jì)的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計(jì)了2019年1月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運(yùn)動(dòng)達(dá)人”,步數(shù)在8000以下的為“非運(yùn)動(dòng)達(dá)人”,采用按性別分層抽樣的方式抽取了100個(gè)用戶,得到如下列聯(lián)表:運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)
6、人總計(jì)男3560女26總計(jì)100(1)(i)將列聯(lián)表補(bǔ)充完整;(ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?(2)將頻率視作概率,從該公司的所有人“運(yùn)動(dòng)達(dá)人”中任意抽取3個(gè)用戶,求抽取的用戶中女用戶人數(shù)的分布列及期望.附:21(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知,求C;若,求,的面積22(10分)某百貨商店今年春節(jié)期間舉行促銷活動(dòng),規(guī)定消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該商店經(jīng)理對(duì)春節(jié)前天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:123456758810141
7、517(1)經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(2)該商店規(guī)定:若抽中“一等獎(jiǎng)”,可領(lǐng)取600元購物券;抽中“二等獎(jiǎng)”可領(lǐng)取300元購物券;抽中“謝謝惠顧”,則沒有購物券已知一次抽獎(jiǎng)活動(dòng)獲得“一等獎(jiǎng)”的概率為,獲得“二等獎(jiǎng)”的概率為現(xiàn)有張、王兩位先生參與了本次活動(dòng),且他們是否中獎(jiǎng)相互獨(dú)立,求此二人所獲購物券總金額的分布列及數(shù)學(xué)期望參考公式:,參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】根據(jù)直線平行的等價(jià)條件,求出m的值,結(jié)合充分條件和必要條件的定義進(jìn)行
8、判斷即可【詳解】當(dāng)m=1時(shí),兩直線方程分別為直線l1:x+y1=0,l2:x+y2=0滿足l1l2,即充分性成立,當(dāng)m=0時(shí),兩直線方程分別為y1=0,和2x2=0,不滿足條件當(dāng)m0時(shí),則l1l2,由得m23m+2=0得m=1或m=2,由得m2,則m=1,即“m=1”是“l(fā)1l2”的充要條件,故答案為:A【點(diǎn)睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價(jià)條件,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2) 本題也可以利用下面的結(jié)論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗(yàn)看兩直線是否重合.2B【解析】利用三角函數(shù)的性質(zhì),逐個(gè)判斷即可求出【詳解】因?yàn)?,?/p>
9、以是的一個(gè)周期,正確;因?yàn)?,所以在上不單調(diào)遞增,錯(cuò)誤;因?yàn)椋允桥己瘮?shù),又是的一個(gè)周期,所以可以只考慮時(shí),的值域當(dāng)時(shí),在上單調(diào)遞增,所以,的值域?yàn)椋e(cuò)誤;綜上,正確的個(gè)數(shù)只有一個(gè),故選B【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用3A【解析】設(shè)切點(diǎn)為,對(duì)求導(dǎo),得到,從而得到切線的斜率,結(jié)合直線方程的點(diǎn)斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點(diǎn)為,由得,代入得,則,故選A.【點(diǎn)睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,直線方程的點(diǎn)斜式,屬于簡單題目.4D【解析】確定點(diǎn)為外心,代入化簡得到,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,又,所以因
10、為,聯(lián)立方程可得,因?yàn)椋?,即故選:【點(diǎn)睛】本題考查了向量模長的計(jì)算,意在考查學(xué)生的計(jì)算能力.5A【解析】將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因?yàn)橹本€與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點(diǎn)睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.6A【解析】由,得,代入集合B即可得.【詳解】,即:,故選:A【點(diǎn)睛】本題考查了集合交集的含義,也考查了元素與集合的關(guān)系,屬于基礎(chǔ)題.7D【解析】作出圖象,取AB中點(diǎn)E,連接EF2,設(shè)F1Ax,根據(jù)雙曲線定義可得x2a,再由勾股定理可得到c27a2,進(jìn)而得到e的值【詳解】解:
11、取AB中點(diǎn)E,連接EF2,則由已知可得BF1EF2,F(xiàn)1AAEEB,設(shè)F1Ax,則由雙曲線定義可得AF22a+x,BF1BF23x2ax2a,所以x2a,則EF22a,由勾股定理可得(4a)2+(2a)2(2c)2,所以c27a2,則e故選:D【點(diǎn)睛】本題考查雙曲線定義的應(yīng)用,考查離心率的求法,數(shù)形結(jié)合思想,屬于中檔題對(duì)于圓錐曲線中求離心率的問題,關(guān)鍵是列出含有 中兩個(gè)量的方程,有時(shí)還要結(jié)合橢圓、雙曲線的定義對(duì)方程進(jìn)行整理,從而求出離心率.8A【解析】首先求出樣本空間樣本點(diǎn)為個(gè),再利用分類計(jì)數(shù)原理求出三個(gè)正面向上為連續(xù)的3個(gè)“1”的樣本點(diǎn)個(gè)數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點(diǎn)數(shù),根據(jù)古典概型的
12、概率計(jì)算公式即可求解.【詳解】樣本空間樣本點(diǎn)為個(gè), 具體分析如下:記正面向上為1,反面向上為0,三個(gè)正面向上為連續(xù)的3個(gè)“1”,有以下3種位置1_ _,_1_,_ _1剩下2個(gè)空位可是0或1,這三種排列的所有可能分別都是,但合并計(jì)算時(shí)會(huì)有重復(fù),重復(fù)數(shù)量為,事件的樣本點(diǎn)數(shù)為:個(gè)故不同的樣本點(diǎn)數(shù)為8個(gè),.故選:A【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,古典概型的概率計(jì)算公式,屬于基礎(chǔ)題9B【解析】由,解得,即或,函數(shù)有兩個(gè)零點(diǎn),不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個(gè)極大值點(diǎn),不成立,排除,故選B.【方法點(diǎn)晴】本題通過對(duì)多個(gè)圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)
13、的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及時(shí)函數(shù)圖象的變化趨勢(shì),利用排除法,將不合題意選項(xiàng)一一排除.10C【解析】采用逐一驗(yàn)證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯(cuò)誤由平面,/而與平面相交,故可知與平面相交,所以不存在EF/BC1B錯(cuò)誤,如圖,作由又平面,所以平面又平面,所以由/,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點(diǎn)到平面的距離,由/,平面,平面所以
14、/平面,則點(diǎn)到平面的距離即點(diǎn)到平面的距離,所以為定值,故四面體EMAC的體積為定值錯(cuò)誤由/,平面,平面所以/平面,則點(diǎn)到平面的距離即為點(diǎn)到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點(diǎn)睛】本題考查線面、線線之間的關(guān)系,考驗(yàn)分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.11C【解析】由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,即,解得;因?yàn)樗?,?dāng)時(shí),.故選:C.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡中的應(yīng)用,難度一般.12A【解析】在中,由余弦定
15、理,得到,再利用即可建立的方程.【詳解】由已知,在中,由余弦定理,得,又,所以,故選:A.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算問題,處理雙曲線離心率問題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)題意計(jì)算,解得答案.【詳解】,故,解得.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積,意在考查學(xué)生的計(jì)算能力.141【解析】先將前兩項(xiàng)利用基本不等式去掉,再處理只含的算式即可【詳解】解:,因?yàn)椋?,所以,?dāng)且僅當(dāng),時(shí)等號(hào)成立,故答案為:1【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用,但是由于有3個(gè)變量,導(dǎo)致該題不易找到思路,屬于中檔題155.【解析
16、】由約束條件作出可行域,令z3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】由題意作出可行域如圖陰影部分所示. 設(shè),當(dāng)直線經(jīng)過點(diǎn)時(shí),取最大值5.故答案為:5【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題16【解析】根據(jù)題意畫出圖形,設(shè),利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設(shè),由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:. 【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,以及三角形相似的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與運(yùn)算能力,屬于基礎(chǔ)題.
17、三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17();();()證明見解析【解析】()根據(jù)導(dǎo)數(shù)的幾何意義求解即可.()求導(dǎo)分析函數(shù)的單調(diào)性,并構(gòu)造函數(shù)根據(jù)單調(diào)性分析可得只能在處取得最小值求解即可.()根據(jù)()()的結(jié)論可知,在上恒成立,再分別設(shè) 的解為、.再根據(jù)不等式的性質(zhì)證明即可.【詳解】()由題,故.且.故在點(diǎn)處的切線方程為.()設(shè)恒成立,故.設(shè)函數(shù)則,故在上單調(diào)遞減且,又在上單調(diào)遞增.又,即且,故只能在處取得最小值,當(dāng)時(shí),此時(shí),且在上,單調(diào)遞減.在上,單調(diào)遞增.故,滿足題意;當(dāng)時(shí),此時(shí)有解,且在上單調(diào)遞減,與矛盾;當(dāng)時(shí),此時(shí)有解,且在上單調(diào)遞減,與矛盾;故().由(),
18、在上單調(diào)遞減且,又在上單調(diào)遞增,故最多一根.又因?yàn)?故設(shè)的解為,因?yàn)?故.所以在遞減,在遞增.因?yàn)榉匠逃袃蓚€(gè)實(shí)數(shù)根,故 .結(jié)合()()有,在上恒成立.設(shè) 的解為,則;設(shè)的解為,則.故,.故,得證.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及根據(jù)函數(shù)的單調(diào)性與最值求解參數(shù)值的問題.同時(shí)也考查了構(gòu)造函數(shù)結(jié)合前問的結(jié)論證明不等式的方法.屬于難題.18(1)e;(2)2.【解析】(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點(diǎn)處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,
19、與的圖象關(guān)于直線對(duì)稱,所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點(diǎn),又,當(dāng)時(shí),曲線在點(diǎn)處的切線為,即,代入點(diǎn),得,即,構(gòu)造函數(shù), 當(dāng)時(shí),當(dāng)時(shí),且,當(dāng)時(shí),單調(diào)遞增,而, 故存在唯一的實(shí)數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得. 所以當(dāng)時(shí),;當(dāng)時(shí),因此函數(shù)在是增函數(shù),在是減函數(shù). 故函數(shù)的最大值為 .令, 因?yàn)椋?,又因?yàn)樵谑菧p函數(shù).所以當(dāng)時(shí),.所以正整數(shù)的最小值為2.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)解決恒成立問題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計(jì)算能力.19(1)(2)【解析】試題分析:(1)確定圓的方程,就是確定半徑的值,因?yàn)橹本€與圓相切,所以先確定直線方程,即確定點(diǎn)坐標(biāo)
20、:因?yàn)檩S,所以,根據(jù)對(duì)稱性,可取,則直線的方程為,根據(jù)圓心到切線距離等于半徑得(2)根據(jù)垂徑定理,求直線被圓截得弦長的最大值,就是求圓心到直線的距離的最小值. 設(shè)直線的方程為,則圓心到直線的距離,利用得,化簡得,利用直線方程與橢圓方程聯(lián)立方程組并結(jié)合韋達(dá)定理得,因此,當(dāng)時(shí),取最小值,取最大值為.試題解析:解:(1)因?yàn)闄E圓的方程為,所以,.因?yàn)檩S,所以,而直線與圓相切,根據(jù)對(duì)稱性,可取,則直線的方程為,即.由圓與直線相切,得,所以圓的方程為.(2)易知,圓的方程為.當(dāng)軸時(shí),所以,此時(shí)得直線被圓截得的弦長為.當(dāng)與軸不垂直時(shí),設(shè)直線的方程為,首先由,得,即,所以(*).聯(lián)立,消去,得,將代入(*)式,得.由于圓心到直線的距離為,所以直線被圓截得的弦長為,故當(dāng)時(shí),有最大值為.綜上,因?yàn)?,所以直線被圓截得的弦長的最大值為.考點(diǎn):直線與圓位置關(guān)系20(1)(i)填表見解析(ii)沒有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”(2)詳見解析【解析】(1)(i)由已給數(shù)據(jù)可完成列聯(lián)表,(ii)計(jì)算出后可得;(2)由列聯(lián)表知從運(yùn)動(dòng)達(dá)人中抽取1個(gè)用戶為女用戶的概率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 西京學(xué)院《建筑裝飾材料及施工工藝》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《國際商務(wù)談判與禮儀》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《電工電子學(xué)》2021-2022學(xué)年期末試卷
- 杯弓蛇影英文課件
- 2024-2025學(xué)年高中物理舉一反三系列專題2.3 氣體的等壓變化和等容變化(含答案)
- 電工教程 課件
- 西華師范大學(xué)《普通地質(zhì)學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《計(jì)算機(jī)組成原理》2023-2024學(xué)年期末試卷
- 西華師范大學(xué)《大氣污染防治技術(shù)》2021-2022學(xué)年第一學(xué)期期末試卷
- 西昌學(xué)院《英漢翻譯理論與技巧》2022-2023學(xué)年第一學(xué)期期末試卷
- 物業(yè)保潔員培訓(xùn)教程
- 山西省太原市2024-2025學(xué)年高三上學(xué)期期中物理試卷(含答案)
- 酒店崗位招聘面試題與參考回答2025年
- (統(tǒng)編2024版)道德與法治七上10.1愛護(hù)身體 課件
- 公安接處警培訓(xùn)
- GB/T 30391-2024花椒
- 供電線路維護(hù)合同
- JGJ18-2012鋼筋焊接及驗(yàn)收規(guī)程
- 胸部術(shù)后護(hù)理科普
- 鞋子工廠供貨合同模板
- 2024碼頭租賃合同范本
評(píng)論
0/150
提交評(píng)論