2022屆福建省普通高中高三最后一卷數(shù)學試卷含解析_第1頁
2022屆福建省普通高中高三最后一卷數(shù)學試卷含解析_第2頁
2022屆福建省普通高中高三最后一卷數(shù)學試卷含解析_第3頁
2022屆福建省普通高中高三最后一卷數(shù)學試卷含解析_第4頁
2022屆福建省普通高中高三最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是( )ABCD2劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一他在割圓術(shù)中提出的,“割

2、之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,得到的近似值為( )ABCD3已知單位向量,的夾角為,若向量,且,則( )A2B2C4D64已知正項等比數(shù)列的前項和為,且,則公比的值為()AB或CD5已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則的內(nèi)切圓的半徑為( )ABCD6若,點C在AB上,且,設,則的值為( )ABCD7幻方最早起源于我國,由正整數(shù)1,2,3,這個數(shù)

3、填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方定義為階幻方對角線上所有數(shù)的和,如,則( )A55B500C505D50508寧波古圣王陽明的傳習錄專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“”表示一根陽線,“”表示一根陰線)從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為( )ABCD9已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為( )ABCD10已知命題:R,;命題 :R,則下列命題中為真命題的是( )ABCD11我國古代有著輝煌的數(shù)學研究成果,其中的周髀算經(jīng)、九章算術(shù)、海島算經(jīng)

4、、孫子算經(jīng)、緝古算經(jīng),有豐富多彩的內(nèi)容,是了解我國古代數(shù)學的重要文獻這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期某中學擬從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )ABCD12若函數(shù)的圖象如圖所示,則的解析式可能是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13一個四面體的頂點在空間直角坐標系中的坐標分別是,則該四面體的外接球的體積為_14平面向量與的夾角為,則_15在中,是的角平分線,設,則實數(shù)的取值范圍是_.16某學校高一、高二、高三年級的學生人數(shù)之比為,現(xiàn)按年級采用分層抽樣的方法抽取若干人

5、,若抽取的高三年級為12人,則抽取的樣本容量為_人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF平面ABCD,EFAB,BAF90,AD2,ABAF2EF2,點P在棱DF上(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角DAPC的正弦值為,求PF的長度18(12分)小麗在同一城市開的2家店鋪各有2名員工.節(jié)假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調(diào)劑1人到該店維持營業(yè),否則該店就停業(yè).(1)求發(fā)生調(diào)劑現(xiàn)象的概率;(

6、2)設營業(yè)店鋪數(shù)為X,求X的分布列和數(shù)學期望.19(12分)如圖,在四棱錐中,底面為矩形,側(cè)面底面,為棱的中點,為棱上任意一點,且不與點、點重合(1)求證:平面平面;(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由20(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修工廠規(guī)定當日損壞的元件A在次日早上 8:30 之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作每個工人獨立維修A元件需要時間相同維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期 1 日 2 日 3 日 4

7、日 5 日 6 日 7 日 8 日 9 日 10 日 元件A個數(shù) 9 15 12 18 12 18 9 9 24 12 日期 11 日 12 日 13 日 14 日 15 日 16 日 17 日 18 日 19 日 20 日 元件A個數(shù) 12 24 15 15 15 12 15 15 15 24 從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù)()求X的分布列與數(shù)學期望;()若a,b,且b-a=6,求最大值;()目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結(jié)論)21(12分)已知拋物線和圓,

8、傾斜角為45的直線過拋物線的焦點,且與圓相切(1)求的值;(2)動點在拋物線的準線上,動點在上,若在點處的切線交軸于點,設求證點在定直線上,并求該定直線的方程22(10分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,湖面上的點在線段上,且,均與圓相切,切點分別為,其中棧道,和小島在同一個平面上.沿圓的優(yōu)?。▓A上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】易知

9、單調(diào)遞增,由可得唯一零點,通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點為,所以,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,.故選D【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構(gòu)造函數(shù)法的應用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.2A【解析】設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術(shù)可知當n變得很大時,這n個等腰三角形的面積之和近似等于

10、圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.3C【解析】根據(jù)列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運算,考查向量模的求法,屬于基礎題.4C【解析】由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數(shù)列,故,所以,故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3) 為等比數(shù)列( )且公比為.5B【解析

11、】設左焦點的坐標, 由AB的弦長可得a的值,進而可得雙曲線的方程,及左右焦點的坐標,進而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設左焦點,由題意可得,由,可得,所以雙曲線的方程為: 所以,所以三角形ABF2的周長為設內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應用,屬于中檔題.6B【解析】利用向量的數(shù)量積運算即可算出【詳解】解:,又在上,故選:【點睛】本題主要考查了向量的基本運算的

12、應用,向量的基本定理的應用及向量共線定理等知識的綜合應用7C【解析】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,于是故選:C【點睛】本題考查了數(shù)陣問題,考查了學生邏輯推理,數(shù)學運算的能力,屬于中檔題.8B【解析】根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),

13、(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎題.9C【解析】可設,根據(jù)在上為偶函數(shù)及便可得到:,可設,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對數(shù)的運算得到、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因為,即,又,設,根據(jù)條件,;若,且,則:;在上是減函數(shù);在上是增函數(shù);所以,故選:C【點睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個函數(shù)單調(diào)性的方法和過程:設,通過條件比較與,函數(shù)的單調(diào)性的應用,屬于中檔題.10B【解析】

14、根據(jù),可知命題的真假,然后對取值,可得命題 的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對命題:可知,所以R,故命題為假命題命題 :取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.11D【解析】利用列舉法,從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】周髀算經(jīng)、九章算術(shù)、海島算經(jīng)、孫子算經(jīng)、緝古算經(jīng),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期記這5部專著分別為,其中產(chǎn)生于漢、

15、魏、晉、南北朝時期從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為故選D【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有 (1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,. ,再,.依次. 這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.1

16、2A【解析】由函數(shù)性質(zhì),結(jié)合特殊值驗證,通過排除法求得結(jié)果.【詳解】對于選項B, 為 奇函數(shù)可判斷B錯誤;對于選項C,當時, ,可判斷C錯誤;對于選項D, ,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.二、填空題:本題共4小題,每小題5分,共20分。13【解析】將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補體法,由空間點坐標可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方

17、體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎題.14【解析】由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為【點睛】本題主要考查平面向量模的計算,只需先求出向量的數(shù)量積,進而即可求出結(jié)果,屬于基礎題型.15【解析】設,由,用面積公式表示面積可得到,利用,即得解.【詳解】設,由得:,化簡得,由于,故.故答案為:【點睛】本題考查了解三角形綜合,考查了學生轉(zhuǎn)化劃歸,綜合分析,數(shù)學運算能力,屬于中檔題.16【解析】根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.【詳解】設抽取

18、的樣本為,則由題意得,解得.故答案為:【點睛】本題考查了分層抽樣的知識,算出抽樣比是解題的關(guān)鍵,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,則(1,0,2),(2,1,1),計算夾角得到答案.(2)設,01,計算P(0,2,22),計算平面APC的法向量(1,1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計算得到答案.【詳解】(1)BAF90,AFAB,又平面ABEF平面ABCD,且平面ABEF平面ABCDAB,AF平面ABCD,又四邊形ABCD為矩形,以A為

19、原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,AD2,ABAF2EF2,P是DF的中點,B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(1,0,2),(2,1,1),設異面直線BE與CP所成角的平面角為,則cos,異面直線BE與CP所成角的余弦值為(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),D(0,2,0),設P(a,b,c),01,即(a,b,c2)(0,2,2),解得a0,b2,c22,P(0,2,22),(0,2,22),(2,2,0),設平面APC的法向量(x,y,z),則,取x1,得(1,1,),平面ADP的法向量(1,0,0

20、),二面角DAPC的正弦值為,|cos|,解得,P(0,),PF的長度|PF|【點睛】本題考查了異面直線夾角,根據(jù)二面角求長度,意在考查學生的空間想象能力和計算能力.18(1)(2)見解析,【解析】(1)根據(jù)題意設出事件,列出概率,運用公式求解;(2)由題得,X的所有可能取值為,根據(jù)(1)和變量對應的事件,可得變量對應的概率,即可得分布列和期望值.【詳解】(1)記2家小店分別為A,B,A店有i人休假記為事件(,1,2),B店有i人,休假記為事件(,1,2),發(fā)生調(diào)劑現(xiàn)象的概率為P.則,.所以.答:發(fā)生調(diào)劑現(xiàn)象的概率為.(2)依題意,X的所有可能取值為0,1,2.則,.所以X的分布表為:X012

21、P所以.【點睛】本題是一道考查概率和期望的??碱}型.19(1)證明見解析 (2)存在,為中點【解析】(1)證明面,即證明平面平面;(2)以為坐標原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標系利用向量方法得,解得,所以為中點【詳解】(1)由于為中點,又,故,所以為直角三角形且,即又因為面,面面,面面,故面,又面,所以面面(2)由(1)知面,又四邊形為矩形,則兩兩垂直以為坐標原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標系則,設,則,設平面的法向量為,則有,令,則,則平面的一個法向量為,同理可得平面的一個法向量為,設平面與平面所成角為,則由題意可得,解得,所以點為中點【點睛】本題主要考查空間幾何位置關(guān)系的證明,考查空間二面角的應用,意在考查學生對這些知識的理解掌握水平.20()分布列見解析,;();()至少增加2人.【解析】()求出X的所有可能取值為9,12,15,18,24,求出概率,得到X

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論