信號(hào)分析與處理:第7章 離散時(shí)間信號(hào)與系統(tǒng)的頻域分析_第1頁(yè)
信號(hào)分析與處理:第7章 離散時(shí)間信號(hào)與系統(tǒng)的頻域分析_第2頁(yè)
信號(hào)分析與處理:第7章 離散時(shí)間信號(hào)與系統(tǒng)的頻域分析_第3頁(yè)
信號(hào)分析與處理:第7章 離散時(shí)間信號(hào)與系統(tǒng)的頻域分析_第4頁(yè)
信號(hào)分析與處理:第7章 離散時(shí)間信號(hào)與系統(tǒng)的頻域分析_第5頁(yè)
已閱讀5頁(yè),還剩61頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第7章 離散時(shí)間信號(hào)與系統(tǒng)的頻域分析7.1離散時(shí)間周期信號(hào)的傅立葉級(jí)數(shù)7.2離散時(shí)間傅里葉變換7.3離散時(shí)間傅立葉變換的性質(zhì)7.4離散時(shí)間LTI系統(tǒng)的頻域分析 周期序列的頻域分析可以采用兩種方法,一種是采用離散傅立葉級(jí)數(shù)DFS (Discrete Fourier Series) ,另一種是引入奇異函數(shù),用奇異函數(shù)表示它的傅立葉變換。7.1 離散時(shí)間周期信號(hào)的傅立葉級(jí)數(shù) 式中Xk是傅里葉級(jí)數(shù)的系數(shù)。 即只剩 k=m 一項(xiàng)令m =kXk是周期序列。 稱(chēng)為DFS(離散傅立葉級(jí)數(shù))的正變換。頻譜比實(shí)際值大N倍它是一個(gè)由 N 個(gè)獨(dú)立諧波分量組成的傅立葉級(jí)數(shù)DFS(離散傅立葉級(jí)數(shù))的逆變換:2)離散傅立葉

2、級(jí)數(shù)所有諧波成分中只有N個(gè)是獨(dú)立的,這是與連續(xù)傅氏級(jí)數(shù)的不同之處。1)k次諧波的頻率為設(shè) 是以N為周期的周期序列,它可以展開(kāi)成傅里葉級(jí)數(shù)。對(duì)DFS的說(shuō)明 對(duì)每一個(gè)整數(shù)n, 離散點(diǎn)x(n)是一個(gè)有限項(xiàng)的級(jí)數(shù),求和只需N項(xiàng)。 對(duì)每一個(gè)整數(shù)k,X(k) 是一個(gè)有限項(xiàng)的級(jí)數(shù),求和只需N項(xiàng)。 是周期函數(shù),定義域n: , 是周期函數(shù),定義域k: , 重要意義:只要計(jì)算一個(gè)周期的N個(gè)點(diǎn),即可得到全n和k域 的結(jié)果。 x(n)是周期N, X(k)離散、周期N,譜線間隔 x(n)離散,X(k) 周期, 即: Xk在一個(gè)周期內(nèi)有N個(gè)諧波分量,第k個(gè)諧波分量為: n X(k)一個(gè)周期主值0, N1k x(n)一個(gè)周

3、期主值0, N1周期N點(diǎn)DFS總是收斂,因?yàn)槭怯邢迶?shù)項(xiàng)的求和 例 如圖所示序列的周期N=10 ,求其頻譜。解周期序列信號(hào)的頻譜 7.2.1 離散時(shí)間傅里葉變換的定義 把Z變換和反變換重寫(xiě)如下: 當(dāng)z只在Z平面的單位圓上取值 ,即時(shí),可以得到 離散時(shí)間序列x(n)的傅里葉變換,即DTFT(Discrete Time Fourier Transformation)和傅里葉反變換,即IDTFT。 7.2 離散時(shí)間傅里葉變換為求FT的反變換,上式兩邊乘以e jm , 并在 -內(nèi)對(duì)進(jìn)行積分, 得即只有n=m 一項(xiàng)不等于0,故X()又可以寫(xiě)成X()表示序列x(n)的頻域特性,又稱(chēng)為x(n)的頻譜。其中,|

4、X()|稱(chēng)為幅度頻譜, 稱(chēng)為相位頻譜,二者都是的連續(xù)函數(shù)。 DTFTIDTFT對(duì)DTFT的說(shuō)明 是 的周期連續(xù)函數(shù),以 為周期;x(n)不是n的周期函數(shù). ,則x(n)的DTFT存在,即收斂. 條件:Z變換的ROC包含單位圓7.2.2 典型序列的離散時(shí)間信號(hào)傅里葉變換1單位樣值序列典型信號(hào)的DTFT 例 求 的傅里葉變換。 解 x(n)不滿足絕對(duì)可和的條件 。ROC邊界在單位圓, 不是X(z)的簡(jiǎn)單對(duì)應(yīng)且不能用定義直接求。2單位矩形序列例 若,求此序列的傅里葉變換X()。 解方法一方法二的Z變換的收斂域包含單位圓,這時(shí)3單邊指數(shù)序列 典型信號(hào)的DTFT 例 求 的離散時(shí)間傅里葉變換,其中 。

5、解 例 離散時(shí)間系統(tǒng)的理想低通濾波器頻率特 如圖。求它的逆傅立葉變換h(n)。 解周期性是以2為周期的。線性性時(shí)移與頻移性是x(n)的DFS、DTFT的共性,有別于x(t)的FS、FT 。時(shí)移相移 調(diào)制頻移 7.3 離散時(shí)間傅里葉變換DTFT的基本性質(zhì) 共軛對(duì)稱(chēng)性若x(n)是實(shí)序列,則信號(hào)的反轉(zhuǎn)時(shí)域反轉(zhuǎn)頻域反轉(zhuǎn) 若x(n)是實(shí)偶序列則即 是實(shí)偶函數(shù)頻域微分特性時(shí)域的線性加權(quán)頻域的微分 時(shí)域卷積性質(zhì)(與FT相同)若則卷積特性是頻域分析LTI系統(tǒng)的理論基礎(chǔ)。 時(shí)域卷積頻域?yàn)V波時(shí)域相乘性質(zhì)(與FT同) 若則調(diào)制特性在信息傳輸中是極其重要的。時(shí)域加窗、調(diào)制、抽樣頻域卷積帕斯瓦爾(Parseval)定理

6、若則非周期能量信號(hào)時(shí)域總能量頻域一周期內(nèi)的總能量時(shí)域的全部信息量包含在頻譜的一個(gè)周期內(nèi),所以只討論頻譜的一個(gè)周期就夠了。對(duì)偶性連續(xù)周期無(wú)限非周期離散有限對(duì)偶對(duì)偶性連續(xù)、非周期信號(hào)連續(xù)、周期信號(hào)離散、周期信號(hào)離散、非周期信號(hào)非周期、連續(xù)非周期、離散周期、離散周期、連續(xù)對(duì)偶時(shí)域有限 頻域無(wú)限寬度時(shí)域無(wú)限持續(xù) 頻域?qū)挾扔邢薅x一 系統(tǒng)頻率響應(yīng)即系統(tǒng)單位樣值響應(yīng) h(n)函數(shù)的傅立葉變換。 是以 h(n) 為加權(quán)系數(shù),對(duì)各次諧波進(jìn)行加權(quán)或改變的情況(物理意義)。7.4 離散時(shí)間LTI系統(tǒng)的頻域分析7.4.1 頻率響應(yīng)系統(tǒng)的激勵(lì)是 時(shí),它的頻譜覆蓋了 的范圍,于是系統(tǒng)的單位樣值響應(yīng) 可以看成對(duì)各次的諧波

7、的濾波的總的效果 。 反映了系統(tǒng)對(duì)整個(gè)頻帶的濾波作用定義二 正弦序列及其作用下系統(tǒng)的 穩(wěn)態(tài)響應(yīng)的傅立葉變換之比因?yàn)?是周期的,所以 也是周期的,周期為 。定義二的物理意義把 看成無(wú)數(shù)個(gè)窄帶濾波器,每個(gè)濾波器的幅頻特性是 ,且對(duì)信號(hào)有相移作用 。系統(tǒng)的穩(wěn)態(tài)響應(yīng)例 描述某一離散時(shí)間系統(tǒng)的系統(tǒng)函數(shù)為: ,求系統(tǒng)的頻率響性。 解:其幅度函數(shù)為: 其相位函數(shù)為: ej頻率響應(yīng)函數(shù)為 例 若系統(tǒng)函數(shù)為解:頻率響應(yīng)函數(shù)為幅度函數(shù)和相位函數(shù)分別為,求頻率特性。ej由于在Z域,Y(z)=X(z)H(z),當(dāng)z=ej時(shí),可以得到系統(tǒng)在不同頻率信號(hào)作用下響應(yīng)的幅度為 7.4.2 利用系統(tǒng)函數(shù)的零極點(diǎn)粗略繪制頻率響應(yīng)曲線系統(tǒng)的頻率響應(yīng)的幾何確定法由幾何法可以看出(1)z=0處的零極點(diǎn)對(duì)幅頻特性 沒(méi)有影響,只對(duì)相位有影響。(2)當(dāng) 旋轉(zhuǎn)某個(gè)極點(diǎn) 附近時(shí),例如在同一半徑上時(shí), 較短,則 在該點(diǎn)應(yīng)當(dāng)出現(xiàn)一個(gè)峰值, 越短, 附近越尖銳。若 落在單位圓上,則 ,則 處的峰值趨于無(wú)窮大。(3)對(duì)于零點(diǎn)則其作用與極點(diǎn)的作用正好相反。低通高通帶通帶阻全通靠近單位圓周的極點(diǎn)附近有尖峰7.4.3 離散時(shí)間LTI系統(tǒng)的頻域分析低通濾波器作 業(yè)7-27-57-67-7 (1)(4)7-127-15連續(xù)信號(hào)和離散序列的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論