![數(shù)字信號處理教學課件:Chapter10 FIR Digital Filter Design_第1頁](http://file4.renrendoc.com/view/ccd021750930c3b7b8ea78555f197792/ccd021750930c3b7b8ea78555f1977921.gif)
![數(shù)字信號處理教學課件:Chapter10 FIR Digital Filter Design_第2頁](http://file4.renrendoc.com/view/ccd021750930c3b7b8ea78555f197792/ccd021750930c3b7b8ea78555f1977922.gif)
![數(shù)字信號處理教學課件:Chapter10 FIR Digital Filter Design_第3頁](http://file4.renrendoc.com/view/ccd021750930c3b7b8ea78555f197792/ccd021750930c3b7b8ea78555f1977923.gif)
![數(shù)字信號處理教學課件:Chapter10 FIR Digital Filter Design_第4頁](http://file4.renrendoc.com/view/ccd021750930c3b7b8ea78555f197792/ccd021750930c3b7b8ea78555f1977924.gif)
![數(shù)字信號處理教學課件:Chapter10 FIR Digital Filter Design_第5頁](http://file4.renrendoc.com/view/ccd021750930c3b7b8ea78555f197792/ccd021750930c3b7b8ea78555f1977925.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、Chapter 10 FIR Digital Filter DesignPreliminary ConsiderationFIR Digital Filter Design MethodsMATLAB Functions in FIR Filter Design10.1 Preliminary ConsiderationDigital Filter SpecificationsSelection of the Filter TypeBasic Approach to FIR Digital Filter DesignFIR Digital Filter Order EstimationScal
2、ing the Digital Transfer Function10.1.1 Basic Approaches to design FIR filtersUnlike IIR digital filter design, FIR filter design does not have any connection with the design of analog filters.The design of FIR filters is based on a direct approximation of the specified magnitude response, with ofte
3、n added requirement that the phase response be linear.10.1.2 Estimation of the Filter OrderThe order (length) of G(z) is directly estimated from the digital filter specification.Several authors have advanced formulas : (1)Kaisers Formula:Estimation of the Filter Order(2)Bellangers Formula:(3) Herman
4、ns Formula:Reference P529 10.6(a-e).Estimation of the Filter OrderA Comparison of FIR Filter Order Formulas:(1)The estimated filter order N of the FIR filter is inversely proportional to the transition band width(p-s) .(2)The order of Kaisers and Bellangers formulas depends on the productpand s.The
5、comparison result is shown in P531.10.2 FIR Filter Design Based on Windowed Fourier SeriesBecause FIR filters are described by a transfer function that is a polynomial in z-1, we will use another way to design them. Methods: (1)Truncating the Fourier series representation of the prescribed frequency
6、 response. (direct and straightforward)(2)Sampling the frequency response to get the DFT of hn, and use IDFT to get hn.10.2.1 Least Integral-Squared Error Design of FIR FiltersLet Hd(ej) denotes the desired frequency response function, hdn denotes the impulse response samples, so :In most applicatio
7、n, for meeting the FR Hd(ej) requirements, hdn is infinite. Least Integral-Squared Error Design of FIR FiltersSo we want find: a Length-N, causal So:The procedure of using htn to replace hdn is called truncating or windowing. Using what approximating criterion: Minimum Integral-Squared Error.Least I
8、ntegral-Squared Error Design of FIR FiltersDefine integral-squared error:Using Parsevals relation, we get:When htn=hdn for -MnM, the R is minimum.10.2.2 Impulse Responses of Ideal FiltersIdeal lowpass filter: Ideal highpass filter:Impulse Responses of Ideal FiltersIdeal bandpass filter: Ideal bandst
9、op filter:Impulse Responses of Ideal FiltersIdeal multi-band filterImpulse Responses of Ideal FiltersHilbert transformer(90-degree phase shifter)Impulse Responses of Ideal FiltersDifferentiator:The N-point linear phase FIR with10.2.3 Gibbs Phenomenon- The Effect of Truncating the hn Gibbs phenomenon
10、 - Oscillatory behavior in the magnitude responses of causal FIR filters obtained by truncating the impulse response coefficients of ideal filterGibbs PhenomenonWiden the discontinuous position of the ideal frequency characteristics to form a transition band. In both sides of ,the H(w) have maximum
11、ripple value. Increasing the truncation-length of window can decrease the width of the transition band, but cant change the relative value of the mainlobe and sidelobe.Gibbs PhenomenonInterpretation:In time-domain:In f-domain:So ,after using a rectangular window, the spectrum of the truncated impuls
12、e response will have oscillatory behavior.Gibbs PhenomenonGibbs PhenomenonSo,we need a window:(1)Its main lobe width is as narrow as possible to ensure a fast transition from passband to stopband.(2)Reducing the relative magnitude of the maximum sidelobe to reduce the passband and stopband ripple.10
13、.2.4 Fixed Window FunctionsRectangular window00.20.40.60.81-100-80-60-40-200w/pGain, dBRectangular windowN11Fixed Window FunctionsHanning window00.20.40.60.81-100-80-60-40-200w/pGain, dBHanning windowFixed Window FunctionsHamming window:00.20.40.60.81-100-80-60-40-200w/pGain, dBHamming windowFixed W
14、indow FunctionsBlackman window:00.20.40.60.81-100-80-60-40-200w/pGain, dBBlackman windowFixed Window FunctionsMagnitude spectrum of each window characterized by a main lobe centered at w = 0 followed by a series of sidelobes with decreasing amplitudes.Parameters predicting the performance of a windo
15、w in filter design are:Main lobe width.Relative sidelobe level.Fixed Window FunctionsMain lobe width ML- given by the distance between zero crossings on both sides of main lobe.Relative sidelobe level Asl - given by the difference in dB between amplitudes of largest sidelobe and main lobe.Fixed Wind
16、ow Functions Passband and stopband ripples are the same.Thus,ObserveFixed Window FunctionsDistance between the locations of the maximum passband deviation and minimum stopband value ML.Width of transition band: w = s - p MLFixed Window FunctionsTo ensure a fast transition from passband to stopband,
17、window should have a very small main lobe width.To reduce the passband and stopband ripple d, the area under the sidelobes should be very small.Unfortunately, these two requirements are contradictory.Fixed Window FunctionsIn the case of rectangular, Hann, Hamming, and Blackman windows, the value of
18、ripple does not depend on filter length or cutoff frequency c , and is essentially constant.In addition, w c / Mwhere c is a constant for most practical purposes.Rectangular and Blackman WindowsFixed Window FunctionsProperties of some fixed window functionsType of windowsMain lobe width MLRelative s
19、idelobe level AslMinimum stopband attenuationTransition bandwidth MRectangular 4/(2M+1)13.3dB20.9dB0.92/MHann 8/(2M+1)31.5dB43.9dB3.11/MHamming8/(2M+1)42.7dB54.5dB3.32/MBlackman 12/(2M+1)75.3dB75.3dB5.56/M10.2.5 Adjustable Window FunctionsDolph-Chebyshev windowWhere: is the relative sidelobe amplitu
20、de. Adjustable Window FunctionsKaiser windowWhere:Its zero-order Bessel function, and is adjustable.So it is called adjustable windowDesign Steps for Windowed Low Pass FIR Filters(1) Choose a pass band edge frequency in Hz for the filter in the middle of the transition width: c =(p +s )/2(2) Substit
21、ute c into h1n, the infinite impulse response for an ideal low pass filter: h1n=sin(nc)/n Design Steps for Windowed Low Pass FIR Filters(3) Choose a window based on the specified, and calculate the number of nonzero window terms.(4) Calculate FIR hn from hn=h1nwn, notice the response is noncausal.(5
22、) Shift the impulse response to the right by (N-1)/2 to make the filter causal.(6) Compute to test.A Example of FIR Filter Design:Design a linear phase FIR LPF:If given the passband edge frequency p=0.2, the passband ripple is 1dB,the stopband edge frequency s=0.3 ,the minimum stopband attenuation-2
23、5dB.FIR Filter Design ExampleSpecifications: p=0.2, s=0.3 , p =1dB, s=25dBThusSo, the ideal LP impulse response is:Select a window based on table 10.2 and specifications.Because of s=25dB, select window Hann.A Example of FIR Filter Design:Calculate order N:N=2M+1=65The impulse response is:Finally, t
24、est the result.Supplement: FIR Filter Design Based on Frequency Sampling ApproachExpand the idea of window function method to frequency domain, we get frequency sampling approach in FIR filters design, that is:Find an approximation of the desired FR H(ej)in frequency domain. Basic Idea of Frequency Sampling ApproachNote:Hk must satisfy constraint that the FIR filter is linear phase.Use to approximate the desired frequency response , then from: we can get the length-N impulse response hn of the FIR filter.Design Steps:(1)From ide
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度光纖網(wǎng)絡建設項目施工合同范本(智慧城市)
- 2025年度網(wǎng)絡安全服務合同退款及應急響應協(xié)議
- 2025年度房產居間代理服務合同規(guī)范
- 2025年度教育投資貸款保證合同范本(教育金融版)
- 2025年度新型綠色建筑項目內部承包合同范本
- 2025年度建筑圍擋廣告市場調研與分析合同
- 2025年度網(wǎng)絡安全防護合同協(xié)議書
- 2025年度建筑工程勞務分包與結算管理合同
- 2025年度貨運車輛租賃與綠色物流技術研發(fā)合同
- 2025年度新型環(huán)保材料建筑工程合同種類詳解
- 城市隧道工程施工質量驗收規(guī)范
- 2025年湖南高速鐵路職業(yè)技術學院高職單招高職單招英語2016-2024年參考題庫含答案解析
- 五 100以內的筆算加、減法2.筆算減法 第1課時 筆算減法課件2024-2025人教版一年級數(shù)學下冊
- 2025江蘇太倉水務集團招聘18人高頻重點提升(共500題)附帶答案詳解
- 2024-2025學年人教新版高二(上)英語寒假作業(yè)(五)
- 2025年八省聯(lián)考陜西高考生物試卷真題答案詳解(精校打印)
- 2025脫貧攻堅工作計劃
- 借款人解除合同通知書(2024年版)
- 《血小板及其功能》課件
- 江蘇省泰州市靖江市2024屆九年級下學期中考一模數(shù)學試卷(含答案)
- 沐足店長合同范例
評論
0/150
提交評論