2022年湖北黃岡高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁
2022年湖北黃岡高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁
2022年湖北黃岡高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁
2022年湖北黃岡高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁
2022年湖北黃岡高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡

2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在關(guān)于的不等式中,“”是“恒成立”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件2已知數(shù)列的前項和為,且,則( )ABCD3已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若, 則雙曲線的離心率為()ABC4D24設(shè),是空間兩條不同的直線,是空間兩個不同的平面,給出下列四個命題:若,則;若,則;若,則;若,則.其中正確的是( )ABCD5閱讀下面的程序框圖,運行相應(yīng)的程序,程序運行輸出的結(jié)果是( )A11B1C29D286已知實數(shù)滿足約束條件,則

3、的最小值為( )A-5B2C7D117關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是( )ABCD8已知函數(shù),且,則( )A3B3或7C5D5或89已知,若,則等于( )A3B4C5D610的展開式中有理項有( )A項B項C項D項11雙曲線的一條漸近線方程為,那么它的離心率為( )ABCD12已知,且,則的值為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知實數(shù)滿足則點構(gòu)成的區(qū)域的面積為_,的最大值為_14已知函數(shù)的最小值為2,則_15平行四邊形中,為邊上一點(不與重合),將平行四邊形沿折起,使五點均在一個球面上,當四棱錐體積最大時,球的表面積為_.16如圖所示,在正三棱柱

4、中,是的中點,, 則異面直線與所成的角為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)的內(nèi)角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.18(12分)某工廠生產(chǎn)一種產(chǎn)品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機抽取2件,假設(shè)其中至少有1件是標準長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,

5、生產(chǎn)一件產(chǎn)品為標準長度的概率的最小值.19(12分)設(shè)函數(shù).(1)若,時,在上單調(diào)遞減,求的取值范圍;(2)若,求證:當時,20(12分)在中, 角,的對邊分別為, 其中, .(1)求角的值;(2)若,為邊上的任意一點,求的最小值.21(12分)如圖,在四棱錐中,底面是邊長為2的菱形,平面平面,點為棱的中點()在棱上是否存在一點,使得平面,并說明理由;()當二面角的余弦值為時,求直線與平面所成的角22(10分)在中,角,所對的邊分別為,且求的值;設(shè)的平分線與邊交于點,已知,求的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C

6、【解析】討論當時,是否恒成立;討論當恒成立時,是否成立,即可選出正確答案.【詳解】解:當時,由開口向上,則恒成立;當恒成立時,若,則 不恒成立,不符合題意,若 時,要使得恒成立,則 ,即 .所以“”是“恒成立”的充要條件.故選:C.【點睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個命題的關(guān)系時,一般分成兩步,若,則推出 是 的充分條件;若,則推出 是 的必要條件.2C【解析】根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,

7、屬于基礎(chǔ)題.3D【解析】設(shè),根據(jù)可得,再根據(jù)又,由可得,化簡可得,即可求出離心率【詳解】解:設(shè),即,又,由可得,即,故選:D【點睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計算,離心率的求法,屬于基礎(chǔ)題和易錯題4C【解析】根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【詳解】解:、也可能相交或異面,故錯:因為,所以或,因為,所以,故對:或,故錯:如圖因為,在內(nèi)過點作直線的垂線,則直線,又因為,設(shè)經(jīng)過和相交的平面與交于直線,則又,所以因為, 所以,所以,故對.故選:C【點睛】考查線面平行或垂直的判斷,基礎(chǔ)題.5C【解析】根據(jù)程序框圖的模擬過程,寫出每執(zhí)行一次的運行結(jié)果,屬于基礎(chǔ)題.【詳解】初始值,

8、第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點睛】本題考查了循環(huán)結(jié)構(gòu)的程序框圖的讀取以及運行結(jié)果,屬于基礎(chǔ)題.6A【解析】根據(jù)約束條件畫出可行域,再將目標函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項【點睛】本題考查線性規(guī)劃求一次相加的目標函數(shù),屬于常規(guī)題型,是簡單題.7A【解析】由的解集,可知及,進而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令

9、,解得,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計算求解能力與推理能力,屬于基礎(chǔ)題.8B【解析】根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎(chǔ)題9C【解析】先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關(guān)向量的問題,涉及到的知識點有向量的減法坐標運算公式,向量垂直的坐標表示,屬于基礎(chǔ)題目.10B【解析】由二項展開式定理求出通項,求出的指數(shù)為整

10、數(shù)時的個數(shù),即可求解.【詳解】,當,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關(guān)鍵,屬于基礎(chǔ)題.11D【解析】根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】雙曲線的一條漸近線方程為,可得,雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎(chǔ)題.12A【解析】由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,所以.故選:A.【點睛】本題考查三角函數(shù)誘導(dǎo)公式、二倍角公式以及兩角差的正切公式的應(yīng)用,考查學(xué)生的基本計算能力,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小

11、題5分,共20分。138 11 【解析】畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合求得區(qū)域面積以及目標函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結(jié)合可知,可行域為三角形,且底邊長,高為,故區(qū)域面積;令,變?yōu)?,顯然直線過時,z最大,故.故答案為:;11.【點睛】本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎(chǔ)題.14【解析】首先利用絕對值的意義去掉絕對值符號,之后再結(jié)合后邊的函數(shù)解析式,對照函數(shù)值等于2的時候?qū)?yīng)的自變量的值,從而得到分段函數(shù)的分界點,從而得到相應(yīng)的等量關(guān)系式,求得參數(shù)的值.【詳解】根據(jù)題意可知,可以發(fā)現(xiàn)當或時是分界點,結(jié)合函數(shù)的解析式,可以判斷0不可能,所以只能是

12、是分界點,故,解得,故答案是.【點睛】本題主要考查分段函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),函數(shù)最值的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.15【解析】依題意可得、四點共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當且僅當面面時體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、四點共圓,所以因為,所以,所以三角形為正三角形,則,利用余弦定理得即,解得,則所以,當面面時,取得最大,所以的外接圓的半徑,又面面,且面面, 面所以面,所以外接球的半徑所以故答案為:【點睛】本題考查多面體的外接球

13、的相關(guān)計算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.16【解析】要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角【詳解】取的中點E,連AE, ,易證,為異面直線與所成角,設(shè)等邊三角形邊長為,易算得在故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應(yīng)用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)利用正弦定理邊化角,再利用余弦定理求解即可.(

14、2) 為為的中線,所以再平方后利用向量的數(shù)量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.18(1)(2)【解析】(1)根據(jù)題意即可寫出該批次產(chǎn)品長度誤差的絕對值的頻率分布列,再根據(jù)期望公式即可求出;(2)由(1)可知,任取一件產(chǎn)品是標準長度的概率為0.4,即可求出隨機抽取2件產(chǎn)品,都不是標準長度產(chǎn)品的概率,由對立事件的概率公式即可得到隨機抽取2件產(chǎn)品,至少有1

15、件是標準長度產(chǎn)品的概率,判斷其是否符合生產(chǎn)要求;當不符合要求時,設(shè)生產(chǎn)一件產(chǎn)品為標準長度的概率為,可根據(jù)上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產(chǎn)品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數(shù)學(xué)期望的估計為.(2)由(1)可知任取一件產(chǎn)品是標準長度的概率為0.4,設(shè)至少有1件是標準長度產(chǎn)品為事件,則,故不符合概率不小于0.8的要求.設(shè)生產(chǎn)一件產(chǎn)品為標準長度的概率為,由題意,又,解得,所以符合要求時,生產(chǎn)一件產(chǎn)品為標準長度的概率的最小值為.【點睛】本題主要考查離散型隨機變量的期望的求法,相互獨立事

16、件同時發(fā)生的概率公式的應(yīng)用,對立事件的概率公式的應(yīng)用,解題關(guān)鍵是對題意的理解,意在考查學(xué)生的數(shù)學(xué)建模能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題19(1)(2)見解析【解析】(1) 在上單調(diào)遞減等價于在恒成立,分離參數(shù)即可解決.(2)先對求導(dǎo),化簡后根據(jù)零點存在性定理判斷唯一零點所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【詳解】(1),時,在上單調(diào)遞減,令,時,;時,在上為減函數(shù),在上為增函數(shù),的取值范圍為(2)若,時,令,顯然在上為增函數(shù)又,有唯一零點且,時,;時,在上為增函數(shù),在上為減函數(shù)又,當時,【點睛】此題考查函數(shù)定區(qū)間上單調(diào),和零點存在性定理等知識點,難點為找到最值后的構(gòu)造函數(shù)求值域,屬于較難題目

17、.20(1);(2).【解析】(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結(jié)果;(2)在中, 由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解】(1) ,由題知,則,則,;(2)在中, 由余弦定理得,設(shè), 其中.在中,所以,所以的幾何意義為兩點連線斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.【點睛】本題考查正弦定理和余弦定理的實際應(yīng)用,還涉及二倍角正弦公式和誘導(dǎo)公式,考查計算能力.21(1)見解析(2)【解析】()取的中點,連結(jié)、,得到故且,進而得到,利用線面平行的判定定理,即可證得平面.()以為坐標原點建立如圖空間直角坐標系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進而得到為直線與平面所成的角,即可求解.【詳解】()在棱上存在點,使得平面,點為棱的中點理由如下:取的中點,連結(jié)、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,又平面,平面,所以,平面.()由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標原點建立如圖空間直角坐標系,設(shè),則由題意知,設(shè)平面的法向量為,則由得,令,則,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內(nèi)的射影為,所以為直線與平面所成的角,易知在中,從而,所以直線與平面所成的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論