




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知實(shí)數(shù),則下列說法正確的是( )ABCD2已知向量,則與的夾角為( )ABCD3函數(shù)的圖象大致為( )ABCD4某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對應(yīng)點(diǎn)為,
2、則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )ABCD25函數(shù)的定義域?yàn)椋?)ABCD6已知函數(shù)的部分圖象如圖所示,則( )ABCD7波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作圓錐曲線論是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k0,且k1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓現(xiàn)有橢圓=1(ab0),A,B為橢圓的長軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動點(diǎn)M滿足=2,MAB面積的最大值為8,MCD面積的最小值為1,則橢圓的離心率為()ABCD8已知集合,則等于( )ABCD9在關(guān)
3、于的不等式中,“”是“恒成立”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件10已知復(fù)數(shù),則( )ABCD211設(shè)(是虛數(shù)單位),則( )AB1C2D12已知下列命題:“”的否定是“”;已知為兩個(gè)命題,若“”為假命題,則“”為真命題;“”是“”的充分不必要條件;“若,則且”的逆否命題為真命題.其中真命題的序號為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13給出以下式子:tan25+tan35tan25tan35;2(sin35cos25+cos35cos65);其中,結(jié)果為的式子的序號是_.14設(shè)等比數(shù)列的前項(xiàng)和為,若,則_15某種圓柱形的如罐的容
4、積為個(gè)立方單位,當(dāng)它的底面半徑和高的比值為_.時(shí),可使得所用材料最省.16某中學(xué)舉行了一次消防知識競賽,將參賽學(xué)生的成績進(jìn)行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數(shù)是80,則成績在區(qū)間的學(xué)生人數(shù)是_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù),().(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)a、m的值;(2)若對任意恒成立,求實(shí)數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論.18(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程是(為參數(shù),常數(shù)
5、),曲線的極坐標(biāo)方程是.(1)寫出的普通方程及的直角坐標(biāo)方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點(diǎn),求直線的極坐標(biāo)方程.19(12分)過點(diǎn)作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點(diǎn)(1)寫出曲線C的一般方程;(2)求的最小值20(12分)已知橢圓的右焦點(diǎn)為,過作軸的垂線交橢圓于點(diǎn)(點(diǎn)在軸上方),斜率為的直線交橢圓于兩點(diǎn),過點(diǎn)作直線交橢圓于點(diǎn),且,直線交軸于點(diǎn).(1)設(shè)橢圓的離心率為,當(dāng)點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.21(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),
6、以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)為曲線上位于第一,二象限的兩個(gè)動點(diǎn),且,射線交曲線分別于,求面積的最小值,并求此時(shí)四邊形的面積.22(10分)如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過且斜率為的直線交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),(1)求橢圓的方程.(2)當(dāng)時(shí),求的面積.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對于實(shí)數(shù), ,不成立對于不成立對于利用對數(shù)函數(shù)單調(diào)遞增性
7、質(zhì),即可得出對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立 故選:【點(diǎn)睛】利用不等式性質(zhì)比較大小要注意不等式性質(zhì)成立的前提條件解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗(yàn)證的方法2B【解析】由已知向量的坐標(biāo),利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,由于向量夾角范圍為:,.故選:B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.3A【解析】根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯(cuò)誤選項(xiàng),從而得出正確選項(xiàng).【詳解】因?yàn)椋允桥己瘮?shù),排除C和D.當(dāng)時(shí),令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點(diǎn)睛】本小題主
8、要考查函數(shù)圖像的識別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.4B【解析】首先根據(jù)題中所給的三視圖,得到點(diǎn)M和點(diǎn)N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點(diǎn)M、N在其四分之一的矩形的對角線的端點(diǎn)處,根據(jù)平面上兩點(diǎn)間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點(diǎn)M和點(diǎn)N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點(diǎn)處,所以所求的最短路徑的長度為,故選B.點(diǎn)睛:該題考查的是有關(guān)幾何體的表面上兩點(diǎn)之間的最短距離的求解問題,在解題的過程中,需要明確兩個(gè)點(diǎn)在幾何體上所處的位置,再利用平面上兩
9、點(diǎn)間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.5C【解析】函數(shù)的定義域應(yīng)滿足 故選C.6A【解析】先利用最高點(diǎn)縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出的值.最后將代入解析式即可.【詳解】由圖象可知A1,所以T,.f(x)sin(2x+),將代入得)1,結(jié)合0,.sin.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點(diǎn)法作圖求解.屬于中檔題.7D【解析】求得定點(diǎn)M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y)動點(diǎn)M滿足=2,則 =2,化簡得.MAB面積的最大值為8,MCD面積
10、的最小值為1, ,解得,橢圓的離心率為故選D【點(diǎn)睛】本題考查了橢圓離心率,動點(diǎn)軌跡,屬于中檔題8C【解析】先化簡集合A,再與集合B求交集.【詳解】因?yàn)椋?故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算以及分式不等式的解法,屬于基礎(chǔ)題.9C【解析】討論當(dāng)時(shí),是否恒成立;討論當(dāng)恒成立時(shí),是否成立,即可選出正確答案.【詳解】解:當(dāng)時(shí),由開口向上,則恒成立;當(dāng)恒成立時(shí),若,則 不恒成立,不符合題意,若 時(shí),要使得恒成立,則 ,即 .所以“”是“恒成立”的充要條件.故選:C.【點(diǎn)睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個(gè)命題的關(guān)系時(shí),一般分成兩步,若,則推出 是 的充分條件;若,則推
11、出 是 的必要條件.10C【解析】根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.11A【解析】先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出【詳解】,故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題12B【解析】由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對每個(gè)命題進(jìn)行判斷【詳解】“”的否定是“”,正確;已知為兩個(gè)命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯(cuò)誤;“若,則且”是假命題,則它的逆否命題為假命題,錯(cuò)誤.故選:B【點(diǎn)睛】本題考
12、查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ)二、填空題:本題共4小題,每小題5分,共20分。13【解析】由已知分別結(jié)合和差角的正切及正弦余弦公式進(jìn)行化簡即可求解.【詳解】tan60tan(25+35),tan25+tan35tan25tan35;tan25tan35,2(sin35cos25+cos35cos65)2(sin35cos25+cos35sin25),2sin60;tan(45+15)tan60;故答案為:【點(diǎn)睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應(yīng)用,屬于中檔試題.14【解析】由題意,設(shè)等比數(shù)列的公比為,根據(jù)已知條件,列出
13、方程組,求得的值,利用求和公式,即可求解【詳解】由題意,設(shè)等比數(shù)列的公比為,因?yàn)?,即,解得,所?【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式,及前n項(xiàng)和公式的應(yīng)用,其中解答中根據(jù)等比數(shù)列的通項(xiàng)公式,正確求解首項(xiàng)和公比是解答本題的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題15【解析】設(shè)圓柱的高為,底面半徑為,根據(jù)容積為個(gè)立方單位可得,再列出該圓柱的表面積,利用導(dǎo)數(shù)求出最值,從而進(jìn)一步得到圓柱的底面半徑和高的比值【詳解】設(shè)圓柱的高為,底面半徑為.該圓柱形的如罐的容積為個(gè)立方單位,即.該圓柱形的表面積為.令,則.令,得;令,得.在上單調(diào)遞減,在上單調(diào)遞增.當(dāng)時(shí),取得最小值,即材料最省,此時(shí).故答案為:
14、.【點(diǎn)睛】本題考查函數(shù)的應(yīng)用,解答本題的關(guān)鍵是寫出表面積的表示式,再利用導(dǎo)數(shù)求函數(shù)的最值,屬中檔題1630【解析】根據(jù)頻率直方圖中數(shù)據(jù)先計(jì)算樣本容量,再計(jì)算成績在80100分的頻率,繼而得解.【詳解】根據(jù)直方圖知第二組的頻率是,則樣本容量是,又成績在80100分的頻率是,則成績在區(qū)間的學(xué)生人數(shù)是故答案為:30【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生綜合分析,數(shù)據(jù)處理,數(shù)形運(yùn)算的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1),;(2);(3)不能,證明見解析【解析】(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價(jià)于對任意恒成立,
15、即時(shí),利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點(diǎn)存在性定理證明即可.【詳解】(1),曲線在點(diǎn)處的切線方程為,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時(shí),解得,當(dāng)時(shí),對任意,即在單調(diào)遞增,此時(shí),實(shí)數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個(gè)不同的實(shí)根,以下給出證明:記,則關(guān)于的方程有三個(gè)不同的實(shí)根,等價(jià)于函數(shù)有三個(gè)零點(diǎn),當(dāng)時(shí),記,則,在單調(diào)遞增,即,在單調(diào)遞增,至多有一個(gè)零點(diǎn);當(dāng)時(shí),記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個(gè)零點(diǎn),則至多有兩個(gè)單調(diào)區(qū)間,至多有兩個(gè)零點(diǎn).因此,不可能有
16、三個(gè)零點(diǎn).關(guān)于的方程不可能有三個(gè)不同的實(shí)根.【點(diǎn)睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點(diǎn)存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題.18(1),表示以為圓心為半徑的圓;為拋物線;(2)【解析】(1)消去參數(shù)的直角坐標(biāo)方程,利用,即得的直角坐標(biāo)方程;(2)由直線與拋物線相切,求導(dǎo)可得切線斜率,再由直線與圓相切,故切線與圓心與切點(diǎn)連線垂直,可求解得到切點(diǎn)坐標(biāo),即得解.【詳解】(1)消去參數(shù)的直角坐標(biāo)方程為:.的極坐標(biāo)方程.,.當(dāng)時(shí)表示以為圓心為半徑的圓;為拋物線.(2)設(shè)切點(diǎn)為,由于,則切線斜率為,由于直線與圓相切,故切線與圓心與切點(diǎn)連線垂直,故有,直線的直角坐
17、標(biāo)方程為,所以的極坐標(biāo)方程為.【點(diǎn)睛】本題考查了極坐標(biāo),參數(shù)方程綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19(1);(2)【解析】(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個(gè)關(guān)于的一元二次方程,根據(jù),結(jié)合韋達(dá)定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為(2)直線MN的參數(shù)方程為(t為參數(shù)),將直線MN的參數(shù)方程代入曲線,得,整理得,設(shè)M,N對應(yīng)的對數(shù)分別為,則,當(dāng)時(shí),取得最小值為【點(diǎn)睛】該題考查的是有關(guān)參數(shù)方程的問題,涉及到的知識點(diǎn)有參數(shù)方程
18、向普通方程的轉(zhuǎn)化,直線的參數(shù)方程的應(yīng)用,屬于簡單題目.20(1);(2)不存在,理由見解析【解析】(1)寫出,根據(jù),斜率乘積為-1,建立等量關(guān)系求解離心率;(2)寫出直線AB的方程,根據(jù)韋達(dá)定理求出點(diǎn)B的坐標(biāo),計(jì)算出弦長,根據(jù)垂直關(guān)系同理可得,利用等式即可得解.【詳解】(1)由題可得,過點(diǎn)作直線交橢圓于點(diǎn),且,直線交軸于點(diǎn).點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,即,化簡得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯(lián)立得:,設(shè)B的橫坐標(biāo),根據(jù)韋達(dá)定理,即,所以,同理可得若存在使得成立,則,化簡得:,此方程無解,所以不存在使得成立.【點(diǎn)睛】此題考查求橢圓離心率,根據(jù)直線與橢圓的位置關(guān)系解決弦長問題,關(guān)鍵在于熟練掌握解析幾何常用方法,尤其是韋達(dá)定理在解決解析幾何問題中的應(yīng)用.21(1);(2)面積的最小值為;四邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利工程中的地下水資源管理與保護(hù)考核試卷
- 棉麻行業(yè)發(fā)展趨勢分析考核試卷
- 海洋生物制藥臨床研究與評價(jià)考核試卷
- 電子商務(wù)中的社交購物趨勢考核試卷
- 滑動軸承的靜力學(xué)與動力學(xué)分析考核試卷
- 影視設(shè)備倉儲物流咨詢批發(fā)考核試卷
- 光電子器件在太赫茲技術(shù)的應(yīng)用前景考核試卷
- 生態(tài)環(huán)境宣傳教育與普及考核試卷
- 曲阜師范大學(xué)《植物造景與庭院設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東省德州夏津縣2024-2025學(xué)年初三質(zhì)量檢測試題(三)化學(xué)試題含解析
- 青馬工程筆試試題及答案
- 豆粕交易合同協(xié)議
- 邊緣計(jì)算與5G融合技術(shù)研究-全面剖析
- 8.1薪火相傳的傳統(tǒng)美德 同步課件 -2024-2025學(xué)年統(tǒng)編版道德與法治七年級下冊
- 飛機(jī)的縱向靜穩(wěn)定性飛行原理課件
- 電子化采購招投標(biāo)平臺系統(tǒng)建設(shè)項(xiàng)目解決方案
- 磁分離技術(shù)在天然氣管道黑粉處理中應(yīng)用的研究與效果分析
- 學(xué)術(shù)交流英語(學(xué)術(shù)寫作)智慧樹知到期末考試答案章節(jié)答案2024年哈爾濱工程大學(xué)
- 金屬礦床地下開采——礦床開拓方法設(shè)計(jì)(完整版)
- 基于PLC的地鐵排水控制系統(tǒng)優(yōu)秀95分畢業(yè)設(shè)計(jì)
- 接空冷冷卻塔設(shè)備及管道安裝施工方案
評論
0/150
提交評論