第六屆非線性數(shù)學(xué)物理國(guó)際會(huì)議暨全國(guó)第十三屆可積系統(tǒng)學(xué)術(shù)研討會(huì)1文稿an integrable nonlinear diffusion hierarchy with a common2d arbitrary function_第1頁
第六屆非線性數(shù)學(xué)物理國(guó)際會(huì)議暨全國(guó)第十三屆可積系統(tǒng)學(xué)術(shù)研討會(huì)1文稿an integrable nonlinear diffusion hierarchy with a common2d arbitrary function_第2頁
第六屆非線性數(shù)學(xué)物理國(guó)際會(huì)議暨全國(guó)第十三屆可積系統(tǒng)學(xué)術(shù)研討會(huì)1文稿an integrable nonlinear diffusion hierarchy with a common2d arbitrary function_第3頁
第六屆非線性數(shù)學(xué)物理國(guó)際會(huì)議暨全國(guó)第十三屆可積系統(tǒng)學(xué)術(shù)研討會(huì)1文稿an integrable nonlinear diffusion hierarchy with a common2d arbitrary function_第4頁
第六屆非線性數(shù)學(xué)物理國(guó)際會(huì)議暨全國(guó)第十三屆可積系統(tǒng)學(xué)術(shù)研討會(huì)1文稿an integrable nonlinear diffusion hierarchy with a common2d arbitrary function_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 An Integrable nonlinear diffusion hierarchy with a common 2D arbitrary functionAppl.Math.Lett.50(2015)105SY Lou with LL Xue and QP Liu and 2015.8.23-Weifang 濰坊 Introduction (Levi, Anco)From hereditary operator to integrable hierarchiesAbitrary first order scalar PDEs are integrableAll 1D differenti

2、al scalar hereditary operators (HO)General integrable nonlinear diffusion hierarchySymmetries and Lax pairs of INDHDamped Cole-Hopf hierarchyPrimary branch solutions and special solutionsInfinitely many (nonlocal) conservation lawsDiscussionsIntroduction (symmetries and conservation laws) Modeling P

3、hysics (standard model in particle phys) Symmetries and symmetry breaking Symmetries and conservation laws (Ancos talk) From symmetries to exact solutions (all solutions?) From strong symmetries to symmetries Strong symmetry+hereditary Recursion operator From symmetries to integrable models From exa

4、ct solutions to (conditional) symmetries Classification of hereditary operators From hereditary operator to integrable hierarchies Fokas, Fuchsteiner, Stramp, Santini TuGZ,TianC,MaWX,LiuQP,QiaoZJ, ZhouRG,LouS Definition on HO (for arbitrary f and g): (*) From HO to integrable hierarchies (IHs) Speci

5、al IHs traditional ones ,negative IHs breaking soliton IHs Abitrary first order scalar PDEs are integrable (*) All the scalar functional solution of (*) in the form Unique result: for arbitrary F and n Abitrary first order scalar PDEs (*) are integrable for arbitrary F and n. (*) is C-integrable mod

6、el and its all solutions can be find by symmetry approach SY Lou and RX Yao, 2014, arXiv:1402.6938 v1 All 1D differential scalar hereditary operators (HO) (*) All 1D differential scalar operator of (*) : F and G are arbitrary func. of the indicated vars . K is determined by G. General integrable non

7、linear diffusion hierarchy 1+1 D 1+1 D integrable nonlinear diffusion equation Symmetries and Lax pairs of INDHModel: Lax Pair(s):Symmetries : Damped Cole-Hopf hierarchy (DCHH) Damped Cole-Hopf equation DCHH Special DCHH (SDCHH) by taking g=0 A special diffusion equation from SDCHH (n=1) (%) Conserv

8、ation laws and of SymmetriesSDCHE Local CL Nonlocal CLs Lie point symmetries Hodograph transformation and linearization of SDCHH Special nonlinear diffusion equation (#) Hodograph transformation Linearized hierarchy (n=2 for (#) Special symmetry reduction solutions of the special nonlinear diffusion

9、 equation Travelling wave solution (Lambert W func. solution) Bessel func. Solutions Discussions the only scalar hereditary function All 1st order scalar systems are C-integrable the only 1D scalar HOs All scalar PDEs with only 1D differential HO are C-integrable (yes for all differential HO?) classification of the hereditary matrices classifications of differential matrix o

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論