![斯坦福大學機器學習課程講義第一講-機器學習介紹_第1頁](http://file4.renrendoc.com/view/07896223cc4bb53a11c0f43c8fa3ad4c/07896223cc4bb53a11c0f43c8fa3ad4c1.gif)
![斯坦福大學機器學習課程講義第一講-機器學習介紹_第2頁](http://file4.renrendoc.com/view/07896223cc4bb53a11c0f43c8fa3ad4c/07896223cc4bb53a11c0f43c8fa3ad4c2.gif)
![斯坦福大學機器學習課程講義第一講-機器學習介紹_第3頁](http://file4.renrendoc.com/view/07896223cc4bb53a11c0f43c8fa3ad4c/07896223cc4bb53a11c0f43c8fa3ad4c3.gif)
![斯坦福大學機器學習課程講義第一講-機器學習介紹_第4頁](http://file4.renrendoc.com/view/07896223cc4bb53a11c0f43c8fa3ad4c/07896223cc4bb53a11c0f43c8fa3ad4c4.gif)
![斯坦福大學機器學習課程講義第一講-機器學習介紹_第5頁](http://file4.renrendoc.com/view/07896223cc4bb53a11c0f43c8fa3ad4c/07896223cc4bb53a11c0f43c8fa3ad4c5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、IntroductionWelcomeMachine LearningSPAMMachine Learning Grew out of work in AI New capability for computers Examples: Database mining Large datasets from growth of automation/web. E.g., Web click data, medical records, biology, engineering Applications cant program by hand.E.g., Autonomous helicopte
2、r, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision. Machine Learning Grew out of work in AI New capability for computers Examples: Database mining Large datasets from growth of automation/web. E.g., Web click data, medical records, biology, engineering Application
3、s cant program by hand.E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision. Self-customizing programsE.g., Amazon, Netflix product recommendations Understanding human learning (brain, real AI).IntroductionWhat is machine learningMachine Le
4、arningArthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed. Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure
5、P, if its performance on T, as measured by P, improves with experience E. Machine Learning definitionClassifying emails as spam or not spam. Watching you label emails as spam or not spam. The number (or fraction) of emails correctly classified as spam/not spam. None of the abovethis is not a machine
6、 learning problem.Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam. What is the task T in this setting? “A computer program is said to learn from experience E with respect to some task T and some performance measure P,
7、if its performance on T, as measured by P, improves with experience E.”Machine learning algorithms:Supervised learningUnsupervised learningOthers: Reinforcement learning, recommender systems. Also talk about: Practical advice for applying learning algorithms. IntroductionSupervised LearningMachine L
8、earningHousing price prediction. Price ($) in 1000sSize in feet2 Regression: Predict continuous valued output (price)Supervised Learning“right answers” givenBreast cancer (malignant, benign)ClassificationDiscrete valued output (0 or 1)Malignant?1(Y)0(N)Tumor SizeTumor SizeTumor SizeAgeClump Thicknes
9、sUniformity of Cell SizeUniformity of Cell ShapeTreat both as classification problems. Treat problem 1 as a classification problem, problem 2 as a regression problem. Treat problem 1 as a regression problem, problem 2 as a classification problem. Treat both as regression problems. Youre running a co
10、mpany, and you want to develop learning algorithms to address each of two problems.Problem 1: You have a large inventory of identical items. You want to predict how many of these items will sell over the next 3 months.Problem 2: Youd like software to examine individual customer accounts, and for eac
11、h account decide if it has been hacked/compromised. Should you treat these as classification or as regression problems? IntroductionUnsupervised LearningMachine Learningx1x2Supervised LearningUnsupervised Learningx1x2Source: Su-In Lee, Dana Peer, Aimee Dudley, George Church, Daphne KollerGenesIndivi
12、dualsOrganize computing clustersSocial network analysisImage credit: NASA/JPL-Caltech/E. Churchwell (Univ. of Wisconsin, Madison) Astronomical data analysisMarket segmentationCocktail party problemMicrophone #1Microphone #2Speaker #1Speaker #2Audio clips courtesy of Te-Won Lee.Microphone #1:Micropho
13、ne #2: Microphone #1:Microphone #2: Output #1:Output #2: Output #1:Output #2: Cocktail party problem algorithmW,s,v = svd(repmat(sum(x.*x,1),size(x,1),1).*x)*x);Source: Sam Roweis, Yair Weiss & Eero SimoncelliOf the following examples, which would you address using an unsupervised learning algorithm? (Check all that apply.) Given a database of customer data, automatically discover market segments and group customers into different market segments. Given email labeled as spam/not spam, learn a spam filter.Given a set o
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園寒假安全教育活動方案
- 2025年橡塑改性彈性體項目合作計劃書
- 小學語文作文教學方法的創(chuàng)新研究
- 志愿書和申請書
- 申請繼續(xù)留任的申請書
- 教育科學規(guī)劃課題申請書
- 電梯安裝與維修工理論過關檢測練習題大全附答案
- 小學三年級數學因數中間或末尾有零的乘法競賽練習例題大全附答案
- 小學二年級數學三位數加減三位數計算質量測試訓練題帶答案
- 黨史大學生創(chuàng)業(yè)項目
- 2025春季學期少先隊工作安排表
- 2024中國糖果、巧克力制造市場前景及投資研究報告
- 2025年紀檢辦公室工作計劃范文
- 2024年保險公司柜員年終工作總結
- 2025年南瑞集團招聘筆試參考題庫含答案解析
- 七年級上學期歷史期末考試模擬卷02(原卷版)
- 橋梁建設施工組織設計方案
- GB 14907-2018鋼結構防火涂料
- 中國民航國內航空匯編航路314系列航線
- 山西特色文化簡介(課堂PPT)
- 工業(yè)廠房工程技術標(共93頁)
評論
0/150
提交評論