初中數(shù)學(xué)效率翻倍的經(jīng)典解題法_第1頁(yè)
初中數(shù)學(xué)效率翻倍的經(jīng)典解題法_第2頁(yè)
初中數(shù)學(xué)效率翻倍的經(jīng)典解題法_第3頁(yè)
初中數(shù)學(xué)效率翻倍的經(jīng)典解題法_第4頁(yè)
初中數(shù)學(xué)效率翻倍的經(jīng)典解題法_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第 初中數(shù)學(xué)效率翻倍的經(jīng)典解題法通過(guò)把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式解決數(shù)學(xué)問(wèn)題的方法,叫配方法。 配方法用的最多的是配成完全平方式,它是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。 智適應(yīng)教育鱸鄉(xiāng)北路校區(qū) 2.因式分解法 因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。 因式分解的方法,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相

2、乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。 智適應(yīng)教育鱸鄉(xiāng)北路校區(qū) 3.換元法 換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。 智適應(yīng)教育鱸鄉(xiāng)北路校區(qū) 4.判別式韋達(dá)定理 一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,=b2-4ac(2為平方),不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。 韋達(dá)定理除了已知一元二次方程的

3、一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。 智適應(yīng)教育鱸鄉(xiāng)北路校區(qū) 5.待定系數(shù)法 在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。 智適應(yīng)教育鱸鄉(xiāng)北路校區(qū) 6.構(gòu)造法 在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方

4、程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。 智適應(yīng)教育鱸鄉(xiāng)北路校區(qū) 7.面積法 平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。 用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所

5、以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。 智適應(yīng)教育鱸鄉(xiāng)北路校區(qū) 8.幾何變換法 在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。 所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。 另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。 幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱

6、。 智適應(yīng)教育鱸鄉(xiāng)北路校區(qū) 9.反證法 反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。 反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。 用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。 反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如: 是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n

7、個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。 歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。 導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。 做題效率翻倍的初中公式總結(jié) 1、有理數(shù)的加法運(yùn)算: 同號(hào)相加一邊倒;異號(hào)相加大減小, 符號(hào)跟著大的跑;絕對(duì)值相等零正好. 2、合并同類項(xiàng): 合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣. 3、去、添括號(hào)法則: 去括號(hào)、添括號(hào),關(guān)鍵看符號(hào), 括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào), 括號(hào)前面是負(fù)號(hào),去、添括號(hào)都

8、變號(hào). 4、一元一次方程: 已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒. 5、平方差公式: 平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆. 6、完全平方公式: 完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央; 首尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央. 7、因式分解: 一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜, 兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎, 四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)), 就用一三來(lái)分組,否則二二去分組, 五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組, 以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚. 8、單項(xiàng)式運(yùn)算: 加、減、乘、

9、除、乘(開)方,三級(jí)運(yùn)算分得清, 系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行. 9、一元一次不等式解題的一般步驟: 去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)合并好,再把系數(shù)來(lái)除掉, 兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了. 10、一元一次不等式組的解集: 大大取較大,小小取較小,小大、大小取中間,大小、小大無(wú)處找 一元二次不等式、一元一次絕對(duì)值不等式的解集: 大(魚)于(吃)取兩邊,小(魚)于(吃)取中間. 11、分式混合運(yùn)算法則: 分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘); 乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算; 加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,

10、通分不是很難; 變號(hào)必須兩處,結(jié)果要求最簡(jiǎn). 12、分式方程的解法步驟: 同乘最簡(jiǎn)公分母,化成整式寫清楚, 求得解后須驗(yàn)根,原(根)留、增(根)舍,別含糊. 13、最簡(jiǎn)根式的條件: 最簡(jiǎn)根式三條件,號(hào)內(nèi)不把分母含, 冪指數(shù)(根指數(shù))要互質(zhì)、冪指比根指小一點(diǎn). 14、特殊點(diǎn)的坐標(biāo)特征: 坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后; (+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后; x軸上y為0,x為0在y軸. 象限角的平分線: 象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱卻相反. 平行某軸的直線: 平行某軸的直線,點(diǎn)的坐標(biāo)有講究, 直線平行x軸,縱坐標(biāo)相等橫不同; 直線

11、平行于y軸,點(diǎn)的橫坐標(biāo)仍照舊 15、對(duì)稱點(diǎn)的坐標(biāo): 對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆, x軸對(duì)稱y相反,y軸對(duì)稱x相反; 原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)全變號(hào). 16、自變量的取值范圍: 分式分母不為零,偶次根下負(fù)不行; 零次冪底數(shù)不為零,整式、奇次根全能行. 17、函數(shù)圖象的移動(dòng)規(guī)律: 若把一次函數(shù)的解析式寫成y=k(x+0)+b, 二次函數(shù)的解析式寫成y=a(x+h)2+k的形式, 則可用下面的口訣 左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了 18、一次函數(shù)的圖象與性質(zhì)的口訣: 一次函數(shù)是直線,圖象經(jīng)過(guò)三象限; 正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線; 兩個(gè)系數(shù)k與b,作用之大莫

12、小看,k是斜率定夾角,b與y軸來(lái)相見, k為正來(lái)右上斜,x增減y增減; k為負(fù)來(lái)左下展,變化規(guī)律正相反; k的絕對(duì)值越大,線離橫軸就越遠(yuǎn) 19、二次函數(shù)的圖象與性質(zhì)的口訣: 二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵; 開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn); 開口、大小由a斷,c與y軸來(lái)相見; b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián); 頂點(diǎn)位置先找見,y軸作為參考線; 左同右異中為0,牢記心中莫混亂; 頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn); 橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見. 若求對(duì)稱軸位置, 符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換. 20、反比例函數(shù)的圖象與性質(zhì)的口訣: 反比例函數(shù)有特點(diǎn),雙曲線相背離得遠(yuǎn); k為正,

13、圖在一、三(象)限,k為負(fù),圖在二、四(象)限; 圖在一、三函數(shù)減,兩個(gè)分支分別減. 圖在二、四正相反,兩個(gè)分支分別增; 線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊. 21、特殊三角函數(shù)值記憶: 首先記住30度、45度、60度的正弦值、余弦值的分母都是2, 正切、余切的分母都是3,分子記口訣123,321,三九二十七既可. 三角函數(shù)的增減性:正增余減 22、數(shù)字巧記:(下面的數(shù)字均是約等于,都是無(wú)理數(shù)哈!) =1.414(意思意思而已), =1.7321(三人一起商量), =2.236(吾量量山路), =2.449(糧食是酒), =2.645(二流是我), =2.828(二爸二爸), =3.16(山藥,六兩

14、) 23、平行四邊形的判定: 要證平行四邊形,兩個(gè)條件才能行, 一證對(duì)邊都相等,或證對(duì)邊都平行, 一組對(duì)邊也可以,必須相等且平行. 對(duì)角線,是個(gè)寶,互相平分跑不了, 對(duì)角相等也有用,兩組對(duì)角才能成. 24、梯形問(wèn)題的輔助線: 移動(dòng)梯形對(duì)角線,兩腰之和成一線; 平行移動(dòng)一條腰,兩腰同在現(xiàn); 延長(zhǎng)兩腰交一點(diǎn),中有平行線; 作出梯形兩高線,矩形顯示在眼前; 已知腰上一中線,莫忘作出中位線. 25、添加輔助線歌: 輔助線,怎么添找出規(guī)律是關(guān)鍵. 題中若有角(平)分線,可向兩邊作垂線; 線段垂直平分線,引向兩端把線連; 三角形邊兩中點(diǎn),連接則成中位線; 三角形中有中線,延長(zhǎng)中線翻一番. 26、圓的證明歌: 圓的證明不算難,常把半徑直徑連; 有弦可作弦心距,它定垂直平分弦; 直徑是圓最大弦,直圓周角立上邊,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論