版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2023年高考數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1函數(shù)f(x)=lnABCD2如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,ABCDO,且ABCD,SOOB3,SE.,異面直線SC與OE所成角的正切值為( )ABCD3已知函數(shù)(e為自然對數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的
2、最大值為( )ABCD4記的最大值和最小值分別為和若平面向量、,滿足,則( )ABCD5若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是( )A36 cm3B48 cm3C60 cm3D72 cm36設(shè)集合則( )ABCD7在平面直角坐標(biāo)系中,已知點,若動點滿足 ,則的取值范圍是( )ABCD8已知集合,集合,則()ABCD9大衍數(shù)列,米源于我國古代文獻乾坤譜中對易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項是0,2,4,8,12,18,24,32,40,50,則大衍數(shù)列中奇數(shù)
3、項的通項公式為( )ABCD10已知雙曲線的一條漸近線方程為,則雙曲線的離心率為( )ABCD11運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填( )ABCD12近年來,隨著網(wǎng)絡(luò)的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機抽取了名大學(xué)生進行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:可以估計使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);可以估計不足的大學(xué)生使用主要玩游戲;可以估計使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個數(shù)為( )ABCD二、填空題:本題共4小題,每小題5
4、分,共20分。13已知雙曲線的一條漸近線方程為,則_14滿足線性的約束條件的目標(biāo)函數(shù)的最大值為_15設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_.16設(shè)為數(shù)列的前項和,若,則_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在平面四邊形(圖)中,與均為直角三角形且有公共斜邊,設(shè),將沿折起,構(gòu)成如圖所示的三棱錐,且使=. (1)求證:平面平面;(2)求二面角的余弦值.18(12分)已知函數(shù),其中(1)討論函數(shù)的零點個數(shù);(2)求證:19(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.20(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以原點為極點,
5、軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.()求曲線的普通方程與直線的直角坐標(biāo)方程;()已知直線與曲線交于,兩點,與軸交于點,求.21(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點分別為,點,求的值22(10分)已知.(1)當(dāng)時,求不等式的解集;(2)若,證明:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】因為fx=lnx2-4x+4x-23=2D【解析】可過
6、點S作SFOE,交AB于點F,并連接CF,從而可得出CSF(或補角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tanCSF的值.【詳解】如圖,過點S作SFOE,交AB于點F,連接CF,則CSF(或補角)即為異面直線SC與OE所成的角,又OB3,SOOC,SOOC3,;SOOF,SO3,OF1,;OCOF,OC3,OF1,等腰SCF中,.故選:D.【點睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線分線段成比例的定理,考查了計算能力,屬于基礎(chǔ)題.3A【解析】若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出
7、與的圖象,結(jié)合圖象可得.【詳解】解:,設(shè),當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)單調(diào)遞減,當(dāng)時,當(dāng),函數(shù)恒過點,分別畫出與的圖象,如圖所示,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,且,即,且,故實數(shù)m的最大值為,故選:A【點睛】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運算能力.4A【解析】設(shè)為、的夾角,根據(jù)題意求得,然后建立平面直角坐標(biāo)系,設(shè),根據(jù)平面向量數(shù)量積的坐標(biāo)運算得出點的軌跡方程,將和轉(zhuǎn)化為圓上的點到定點距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,建立平面直角坐標(biāo)系,設(shè),由,可得,即,化簡得
8、點的軌跡方程為,則,則轉(zhuǎn)化為圓上的點與點的距離,轉(zhuǎn)化為圓上的點與點的距離,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標(biāo)化,將問題轉(zhuǎn)化為圓上的點到定點距離的最值問題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.5B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.6C【解析】直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.7D【解析】設(shè)出的坐標(biāo)為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得
9、結(jié)果.【詳解】設(shè) ,則, 為點的軌跡方程點的參數(shù)方程為(為參數(shù)) 則由向量的坐標(biāo)表達式有:又故選:D【點睛】考查學(xué)生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:直接法;定義法;相關(guān)點法;參數(shù)法;待定系數(shù)法8D【解析】可求出集合,然后進行并集的運算即可【詳解】解:,;故選【點睛】考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運算9B【解析】直接代入檢驗,排除其中三個即可【詳解】由題意,排除D,排除A,C同時B也滿足,故選:B【點睛】本題考查由數(shù)列的項選擇通項公式,解題時可代入檢驗,利用排除法求解10B【解
10、析】由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎(chǔ)題.11B【解析】由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,故判斷框中應(yīng)填?故選:【點睛】本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎(chǔ)題12C【解析】根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷的正誤;計算使用主要玩游戲的大學(xué)生所占的比例,可判斷的正誤;
11、計算使用主要找人聊天的大學(xué)生所占的比例,可判斷的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,故超過的大學(xué)生使用主要玩游戲,所以錯誤;使用主要找人聊天的大學(xué)生人數(shù)為,因為,所以正確.故選:C.【點睛】本題考查統(tǒng)計中相關(guān)命題真假的判斷,計算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)雙曲線的標(biāo)準方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,解得.故答案為:.【
12、點睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計算能力,屬于基礎(chǔ)題.141【解析】作出不等式組表示的平面區(qū)域,將直線進行平移,利用的幾何意義,可求出目標(biāo)函數(shù)的最大值。【詳解】由,得,作出可行域,如圖所示:平移直線,由圖像知,當(dāng)直線經(jīng)過點時,截距最小,此時取得最大值。由 ,解得 ,代入直線,得。【點睛】本題主要考查簡單的線性規(guī)劃問題的解法平移法。15【解析】根據(jù)滿足約束條件,畫出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點,此時,目標(biāo)函數(shù) 取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點 此時,目標(biāo)
13、函數(shù) 取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.16【解析】當(dāng)時,由,解得,當(dāng)時,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項公式.【詳解】當(dāng)時,即,當(dāng)時,兩式相減可得,即,即,故數(shù)列是以為首項,為公比的等比數(shù)列,所以.故答案為:【點睛】本題考查數(shù)列的前項和與通項公式的關(guān)系,還考查運算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析;(2)【解析】(1)取AB的中點O,連接,證得,從而證得CO平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面平面;(2)
14、以O(shè)為原點,AB,OC所在的直線為y軸,z軸,建立的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點O,連接,在Rt和RtADB中,AB=2,則=DO=1,又CD= ,所以,即OD,又AB,且ABOD=O,平面ABD,所以平面ABD,又CO平面,所以平面平面DAB (2)以O(shè)為原點,AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則A(0,-1,0),B(0,1,0),C(0,0,1), ,所以,設(shè)平面的法向量為=(),則, 即,代入坐標(biāo)得,令,得,所以,設(shè)平面的法向量為=(), 則, 即, 代入坐標(biāo)得, 令,得,所以,所以,所以
15、二面角A-CD-B的余弦值為.【點睛】本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴密推理是線面位置關(guān)系判定的關(guān)鍵,同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.18(1)時,有一個零點;當(dāng)且時,有兩個零點;(2)見解析【解析】(1)利用的導(dǎo)函數(shù),求得的最大值的表達式,對進行分類討論,由此判斷出的零點的個數(shù).(2)由,得到和,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,即有,從而證得,即.【詳解】(1), 當(dāng)時,當(dāng)時,在上遞增,在上遞減,.令在上遞減,在上遞增
16、,當(dāng)且僅當(dāng)時取等號 時,有一個零點;時,此時有兩個零點; 時,令在上遞增,此時有兩個零點;綜上:時,有一個零點;當(dāng)且時,有兩個零點;(2)由(1)可知:,令在上遞增,【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的零點,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.19(1)整數(shù)的最大值為;(2)見解析.【解析】(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,故存在使得,即,從而當(dāng)時,有,
17、所以,函數(shù)在上單調(diào)遞增;當(dāng)時,有,所以,函數(shù)在上單調(diào)遞減.所以,因此,整數(shù)的最大值為;(2)由(1)知恒成立,令則,上述等式全部相加得,所以,因此,【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題20(1)(x1)2y24,直線l的直角坐標(biāo)方程為xy20;(2)3.【解析】(1)消參得到曲線的普通方程,利用極坐標(biāo)和直角坐標(biāo)方程的互化公式求得直線的直角坐標(biāo)方程;(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系、參數(shù)的幾何意義進行求解.【詳解】(1)由曲線C的參數(shù)方程 (為參數(shù)) (為參數(shù)),兩式平方相加,得曲線C的普通方程為(x1)2y24;由直線l的極坐標(biāo)方程可得coscossinsincossin2,即直線l的直角坐標(biāo)方程為xy20.(2)由題意可得P(2,0),則直線l的參數(shù)方程為 (t為參數(shù))設(shè)A,B兩點對應(yīng)的參數(shù)分別為t1,t2,則|PA|PB|t1|t2|,將 (t為參數(shù))代入(x1)2y24,得t2t30,則0,由韋達定理可得t1t23,所以|PA|PB|3|3.21(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年北師大版選擇性必修1歷史上冊階段測試試卷含答案
- 2025年人教新課標(biāo)八年級地理下冊月考試卷
- 2025年粵教版選擇性必修1歷史下冊月考試卷
- 2025年浙科版高二化學(xué)下冊階段測試試卷
- 2025年蘇教新版九年級地理下冊月考試卷
- 2025年牛津上海版八年級地理下冊月考試卷含答案
- 二零二五版奶茶店顧客滿意度調(diào)查與改進措施合同4篇
- 二零二五年度賭博引發(fā)婚姻破裂的財產(chǎn)分割與子女撫養(yǎng)合同2篇
- 2025年度影視后期制作與剪輯服務(wù)合同范本4篇
- 2025年度專業(yè)樹木種植與生態(tài)旅游開發(fā)合同4篇
- 《化工設(shè)備機械基礎(chǔ)(第8版)》全套教學(xué)課件
- 《帶一本書去讀研:研究生關(guān)鍵學(xué)術(shù)技能快速入門》筆記
- 人教版八年級數(shù)學(xué)下冊舉一反三專題17.6勾股定理章末八大題型總結(jié)(培優(yōu)篇)(學(xué)生版+解析)
- 2024屆上海高考語文課內(nèi)古詩文背誦默寫篇目(精校版)
- DL-T5024-2020電力工程地基處理技術(shù)規(guī)程
- 2024年度-美團新騎手入門培訓(xùn)
- 初中數(shù)學(xué)要背誦記憶知識點(概念+公式)
- 駕照體檢表完整版本
- 農(nóng)產(chǎn)品農(nóng)藥殘留檢測及風(fēng)險評估
- 農(nóng)村高中思想政治課時政教育研究的中期報告
- 20100927-宣化上人《愣嚴咒句偈疏解》(簡體全)
評論
0/150
提交評論