版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2023年高考數學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回
2、。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在復平面內,復數對應的點的坐標為( )ABCD2己知四棱錐中,四邊形為等腰梯形,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為( )ABCD3已知a,b是兩條不同的直線,是兩個不同的平面,且,則“”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件4函數圖像可能是( )ABCD5如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為 ( )ABCD6為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國
3、統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數.對于下列說法:越小,則國民分配越公平;設勞倫茨曲線對應的函數為,則對,均有;若某國家某年的勞倫茨曲線近似為,則;若某國家某年的勞倫茨曲線近似為,則.其中正確的是:ABCD7一個由兩個圓柱組合而成的密閉容器內裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則( )ABCD8設實數、滿足約束條件,則的最小值為( )A2B24C16D
4、149已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為( )ABC3D410甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是( )ABCD11集合,則=( )ABCD12已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為( )AB40C16D二、填空題:本題共4小題,每小題5分,共20分。13設為銳角,若,則的值為_14對定義在上的函數,如果同時滿足以下兩個條件:(1)對任意的總有;(2)當,時,總有成立.則稱函數稱為G函數.若是定義在上G函數,則實數a的取值范圍為_.15在中,角的對邊分別為,且,若外接圓
5、的半徑為,則面積的最大值是_.16袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知向量, .(1)求的最小正周期;(2)若的內角的對邊分別為,且,求的面積.18(12分)已知在中,角,的對邊分別為,且.(1)求的值;(2)若,求面積的最大值.19(12分)已知函數f(x)xlnx,g(x)x2ax.(1)求函數f(x)在區(qū)間t,t1(t0)上的最小值m(t);(2)令h(x)g(x)f(x),A(x1,h(x1),B(x2,h(x2)(x1x2)
6、是函數h(x)圖像上任意兩點,且滿足1,求實數a的取值范圍;(3)若x(0,1,使f(x)成立,求實數a的最大值20(12分)在直角坐標系中,曲線的參數方程為(為參數,為實數)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線與曲線交于,兩點,線段的中點為 (1)求線段長的最小值; (2)求點的軌跡方程21(12分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.22(10分)已知,分別為內角,的對邊,若同時滿足下列四個條件中的三個:;.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應的面積.(若所選條件出現多種可
7、能,則按計算的第一種可能計分)參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】利用復數的運算法則、幾何意義即可得出【詳解】解:復數i(2+i)2i1對應的點的坐標為(1,2),故選:C【點睛】本題考查了復數的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題2A【解析】根據平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球
8、心,且,設四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數形結合的思想,屬于難題.3C【解析】根據線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據線面平行的性質定理,可得;若,根據線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.4D【解析】先判斷函數的奇偶性可排除選項A,C,當時,可分析函數值為正,即可判斷選項.【詳解】,即函數為偶函數,故排除選項A,C,當正數越來越小,趨近于0時,所以函數,故排除選項B,故選:D【點睛】本題主要考查了函數的奇偶性,識別函數的圖象,屬于中
9、檔題.5A【解析】分析:由題意可得為等腰三角形,為等邊三角形,把數量積分拆,設,數量積轉化為關于t的函數,用函數可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設=所以當時,上式取最小值 ,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉化為函數求最值。6A【解析】對于,根據基尼系數公式,可得基尼系數越小,不平等區(qū)域的面積越小,國民分配越公平,所以正確.對于,根據勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以錯誤.對于,因為,所以,所以錯誤.對于,因為,所以,所以正確.故選A
10、7B【解析】根據空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎題.8D【解析】做出滿足條件的可行域,根據圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據圖象,當目標函數過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數形結合求線性目標函數的最值,屬于基礎題.9A【解析】根據題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案【詳解】根
11、據題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平10D【解析】先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數,再得到甲第一個到、丙第三個到的基本事件的種數,利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是. 故選:D【點睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力
12、,屬于基礎題.11C【解析】先化簡集合A,B,結合并集計算方法,求解,即可【詳解】解得集合,所以,故選C【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關鍵化簡集合A,B,難度較小12D【解析】如圖所示,過分別作于,于,利用和,聯立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據得到:,即,根據得到:,即,解得,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.二、填空題:本題共4小題,每小題5分,共20分。13【解析】為銳角,故.14【解析】由不等式恒成立問題采用分離變量最值法:對任意的恒成立,解得,又在,恒成立,即,所以,從而可得.
13、【詳解】因為是定義在上G函數,所以對任意的總有,則對任意的恒成立,解得,當時,又因為,時,總有成立,即 恒成立,即恒成立,又此時的最小值為,即恒成立,又因為 解得.故答案為:【點睛】本題是一道函數新定義題目,考查了不等式恒成立求參數的取值范圍,考查了學生分析理解能力,屬于中檔題.15【解析】由正弦定理,三角函數恒等變換的應用化簡已知等式,結合范圍可求的值,利用正弦定理可求的值,進而根據余弦定理,基本不等式可求的最大值,進而根據三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,又,即,可得:,外接圓的半徑為,解得,由余弦定理,可得,又,(當且僅當時取等號),即最大值為4,面積的最大值為.
14、故答案為:.【點睛】本題主要考查了正弦定理,三角函數恒等變換的應用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應用,考查了轉化思想,屬于中檔題16【解析】試題分析:根據題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、共6種,其中2只球的顏色不同的是、共5種;所以所求的概率是考點:古典概型概率三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2)或【解析】(1)利用平面向量數量積的坐標運算可得,利用正弦函數的周期性即可求解;(2)由(1)可求,結合范圍,可求的值,由余弦定理可求的值,進而根據三角形的面積公式即可求解【詳解】(1)最小正周期 .
15、(2)由(1)知, , 又或. 解得或當時,由余弦定理得即, 解得.此時.當時,由余弦定理得.即,解得.此時.【點睛】本題主要考查了平面向量數量積的坐標運算、正弦函數的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應用,考查了轉化思想和分類討論思想,屬于基礎題18 (1);(2) .【解析】分析:(1)在式子中運用正弦、余弦定理后可得(2)由經三角變換可得,然后運用余弦定理可得,從而得到,故得詳解:(1)由題意及正、余弦定理得, 整理得,(2)由題意得, ,. 由余弦定理得, ,當且僅當時等號成立 面積的最大值為點睛:(1)正、余弦定理經常與三角形的面積綜合在一起考查,解題時要注意整
16、體代換的應用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結合在一起(2)運用基本不等式求最值時,要注意等號成立的條件,在解題中必須要注明19(1)m(t)(2)a22.(3)a22.【解析】(1)是研究在動區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數的極值點與所研究的區(qū)間的大小關系來進行求解(2)注意到函數h(x)的圖像上任意不同兩點A,B連線的斜率總大于1,等價于h(x1)h(x2)x1x2(x1x2)恒成立,從而構造函數F(x)h(x)x在(0,)上單調遞增,進而等價于F(x)0在(0,)上恒成立來加以研究(3)用處理恒成立問題來處理有解問題,先分離變量轉化為求對應函數的
17、最值,得到a,再利用導數求函數M(x)的最大值,這要用到二次求導,才可確定函數單調性,進而確定函數最值【詳解】(1) f(x)1,x0,令f(x)0,則x1.當t1時,f(x)在t,t1上單調遞增,f(x)的最小值為f(t)tlnt;當0t1時,f(x)在區(qū)間(t,1)上為減函數,在區(qū)間(1,t1)上為增函數,f(x)的最小值為f(1)1.綜上,m(t)(2)h(x)x2(a1)xlnx,不妨取0 x1x2,則x1x20,則由,可得h(x1)h(x2)x1x2,變形得h(x1)x1h(x2)x2恒成立令F(x)h(x)xx2(a2)xlnx,x0,則F(x)x2(a2)xlnx在(0,)上單調
18、遞增,故F(x)2x(a2)0在(0,)上恒成立,所以2xa2在(0,)上恒成立因為2x2,當且僅當x時取“”,所以a22.(3)因為f(x),所以a(x1)2x2xlnx.因為x(0,1,則x1(1,2,所以x(0,1,使得a成立令M(x),則M(x).令y2x23xlnx1,則由y0 可得x或x1(舍)當x時,y0,則函數y2x23xlnx1在上單調遞減;當x時,y0,則函數y2x23xlnx1在上單調遞增所以yln40,所以M(x)0在x(0,1時恒成立,所以M(x)在(0,1上單調遞增所以只需aM(1),即a1.所以實數a的最大值為1.【點睛】本題考查了函數與導數綜合問題,考查了學生綜合分析,轉化與劃歸,數學運算能力,屬于難題.20(1)(2)【解析】(1)將曲線的方程化成直角坐標方程為,當時,線段取得最小值,利用幾何法求弦長即可.(2)當點與點不重合時,設,由利用向量的數量積等于可求解,最后驗證當點與點重合時也滿足.【詳解】解曲線的方程化成直角坐標方程為即圓心,半徑,曲線為過定點的直線,易知在圓內,當時,線段
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年增資協議合同簽訂流程
- 2025年倉儲貨物出借協議
- 2025年圣誕節(jié)裝飾協議
- 2025年商業(yè)責任不足額保險條款設定
- 二零二五版木屑生物質顆粒燃料研發(fā)與推廣合同4篇
- 二零二五年度木工行業(yè)技術標準制定合作協議3篇
- 二零二五年度汽車抵押貸款購車二手車過戶合同
- 二零二五年度科技創(chuàng)業(yè)項目股權眾籌委托投資合同
- 二零二五年度車輛綠色出行補貼購買合同
- 二零二五年度經典實習合同(法律事務實習)
- 機電安裝工程安全培訓
- 洗浴部前臺收銀員崗位職責
- 2024年輔警考試公基常識300題(附解析)
- GB/T 43650-2024野生動物及其制品DNA物種鑒定技術規(guī)程
- 暴發(fā)性心肌炎查房
- 工程質保金返還審批單
- 【可行性報告】2023年電動自行車項目可行性研究分析報告
- 五月天歌詞全集
- 商品退換貨申請表模板
- 實習單位鑒定表(模板)
- 數字媒體應用技術專業(yè)調研方案
評論
0/150
提交評論