版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年黑龍江省哈爾濱市某學(xué)校數(shù)學(xué)高職單招測試試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(10題)1.一條線段AB是它在平面a上的射景的倍,則B與平面a所成角為()A.30°B.45°C.60°D.不能確定
2.A.B.C.D.
3.若一幾何體的三視圖如圖所示,則這個幾何體可以是()A.圓柱B.空心圓柱C.圓D.圓錐
4.直線x-y=0,被圓x2+y2=1截得的弦長為()A.
B.1
C.4
D.2
5.不等式-2x2+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}
6.設(shè)則f(f(-2))=()A.-1B.1/4C.1/2D.3/2
7.已知互相垂直的平面α,β交于直線l若直線m,n滿足m⊥a,n⊥β則()A.m//LB.m//nC.n⊥LD.m⊥n
8.不等式-2x22+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}
9.如圖所示的程序框圖中,輸出的a的值是()A.2B.1/2C.-1/2D.-1
10.為了了解全校240名學(xué)生的身高情況,從中抽取240名學(xué)生進行測量,下列說法正確的是()A.總體是240B.個體是每-個學(xué)生C.樣本是40名學(xué)生D.樣本容量是40
二、填空題(10題)11.lg5/2+2lg2-(1/2)-1=______.
12.以點(1,0)為圓心,4為半徑的圓的方程為_____.
13.長方體中,具有公共頂點A的三個面的對角線長分別是2,4,6,那么這個長方體的對角線的長是_____.
14.
15.則a·b夾角為_____.
16.若一個球的體積為則它的表面積為______.
17.過點A(3,2)和點B(-4,5)的直線的斜率是_____.
18.設(shè){an}是公比為q的等比數(shù)列,且a2=2,a4=4成等差數(shù)列,則q=
。
19.
20.已知正實數(shù)a,b滿足a+2b=4,則ab的最大值是____________.
三、計算題(5題)21.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
22.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.
23.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
24.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
25.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
四、證明題(5題)26.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2
+(y+1)2
=8.
27.
28.若x∈(0,1),求證:log3X3<log3X<X3.
29.△ABC的三邊分別為a,b,c,為且,求證∠C=
30.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
五、簡答題(5題)31.簡化
32.求過點P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長為的直線方程。
33.已知求tan(a-2b)的值
34.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當x<0時,判斷f(x)的單調(diào)性并加以證明.
35.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實數(shù)x。
六、綜合題(5題)36.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
37.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
38.
39.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.
40.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.
參考答案
1.B根據(jù)線面角的定義,可得AB與平面a所成角的正切值為1,所以所成角為45°。
2.A
3.B幾何體的三視圖.由三視圖可知該幾何體為空心圓柱
4.D直線與圓相交的性質(zhì).直線x-y=0過圓心(0,0),故該直線被圓x2+y2=1所截弦長為圓的直徑的長度2.
5.D一元二次不等式方程的計算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.
6.C函數(shù)的計算.f(-2)=2-2=1/4>0,則f(f(-2))=f(1/4)=1-=1-1/2=1/2
7.C直線與平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因為n⊥β,所以n⊥L.
8.D不等式的計算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.
9.D程序框圖的運算.執(zhí)行如下,a=2,2>0,a=1/2,1/2>0,a=-l,-1<0,退出循環(huán),輸出-1。
10.D確定總體.總體是240名學(xué)生的身高情況,個體是每一個學(xué)生的身高,樣本是40名學(xué)生的身髙,樣本容量是40.
11.-1.對數(shù)的四則運算.lg5/2+21g2-〔1/2)-1=lg5/2+lg22-2=lg(5/2×4)-2=1-2=-1.
12.(x-1)2+y2=16圓的方程.當圓心坐標為(x0,y0)時,圓的-般方程為(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
13.
14.外心
15.45°,
16.12π球的體積,表面積公式.
17.
18.
,由于是等比數(shù)列,所以a4=q2a2,得q=。
19.5
20.2基本不等式求最值.由題
21.
22.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
23.
24.
25.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
26.
27.
28.
29.
30.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即
31.
32.x-7y+19=0或7x+y-17=0
33.
34.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵
∴
若時
故當X<-1時為增函數(shù);當-1≤X<0為減函數(shù)
35.
∵μ//v∴(2x+1.4)=(2-x,3)得
36.
37.
38.
39.解:(1)直線l過A(0,2),B(-2,-2)兩點,根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點為(-1,0).又直線l過橢圓C的左焦點,故橢圓C的左焦點為(-1,0).設(shè)橢圓C的焦距為2c,則有c=1因為點A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標準方程為
40.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=8,直線l的方程為5x-3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年福建福州福清國投集團招聘工作人員考試真題
- 智慧公安整體解決方案
- 2024年七年級語文上教學(xué)計劃
- 小班下學(xué)期工作計劃15篇
- 設(shè)計師個人工作總結(jié)2024報告
- 廢舊輪胎低溫真空裂解無害化資源化節(jié)能與環(huán)保示范項目可行性研究報告
- 屠宰污水處理項目可行性研究報告
- 年會領(lǐng)導(dǎo)發(fā)言稿大全簡短(模板7篇)
- 工業(yè)項目可行性研究報告
- 普外科診療指南技術(shù)操作規(guī)范
- (完整版)病例演講比賽PPT模板
- 直播合作協(xié)議
- 社科類課題申報工作輔導(dǎo)報告課件
- 頭痛的診治策略講課課件
- 沙利文-內(nèi)窺鏡行業(yè)現(xiàn)狀與發(fā)展趨勢藍皮書
- 國家開放大學(xué)一網(wǎng)一平臺電大《建筑測量》實驗報告1-5題庫
- 規(guī)范診療服務(wù)行為專項整治行動自查表
- (新平臺)國家開放大學(xué)《建設(shè)法規(guī)》形考任務(wù)1-4參考答案
- 精益工廠布局及精益物流規(guī)劃課件
- 注射液無菌檢查的方法學(xué)驗證方案
- 2023年口腔醫(yī)學(xué)期末復(fù)習(xí)-牙周病學(xué)(口腔醫(yī)學(xué))考試歷年真題薈萃帶答案
評論
0/150
提交評論