![2023學(xué)年河北省石家莊市普通高中高三一診考試數(shù)學(xué)試卷(含解析)_第1頁(yè)](http://file4.renrendoc.com/view/2f3e7ead926f1fd8d97158586210b184/2f3e7ead926f1fd8d97158586210b1841.gif)
![2023學(xué)年河北省石家莊市普通高中高三一診考試數(shù)學(xué)試卷(含解析)_第2頁(yè)](http://file4.renrendoc.com/view/2f3e7ead926f1fd8d97158586210b184/2f3e7ead926f1fd8d97158586210b1842.gif)
![2023學(xué)年河北省石家莊市普通高中高三一診考試數(shù)學(xué)試卷(含解析)_第3頁(yè)](http://file4.renrendoc.com/view/2f3e7ead926f1fd8d97158586210b184/2f3e7ead926f1fd8d97158586210b1843.gif)
![2023學(xué)年河北省石家莊市普通高中高三一診考試數(shù)學(xué)試卷(含解析)_第4頁(yè)](http://file4.renrendoc.com/view/2f3e7ead926f1fd8d97158586210b184/2f3e7ead926f1fd8d97158586210b1844.gif)
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.2.設(shè)全集集合,則()A. B. C. D.3.已知雙曲線:的左右焦點(diǎn)分別為,,為雙曲線上一點(diǎn),為雙曲線C漸近線上一點(diǎn),,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.4.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.5.已知三棱錐且平面,其外接球體積為()A. B. C. D.6.記個(gè)兩兩無(wú)交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間7.為實(shí)現(xiàn)國(guó)民經(jīng)濟(jì)新“三步走”的發(fā)展戰(zhàn)略目標(biāo),國(guó)家加大了扶貧攻堅(jiān)的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開(kāi)始,全面實(shí)施“精準(zhǔn)扶貧”政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占2019年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見(jiàn)下表:實(shí)施項(xiàng)目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務(wù)業(yè)參加用戶比脫貧率那么年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍8.過(guò)拋物線()的焦點(diǎn)且傾斜角為的直線交拋物線于兩點(diǎn).,且在第一象限,則()A. B. C. D.9.過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),若,則直線的斜率為()A. B.C.或 D.或10.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計(jì)),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個(gè) B.個(gè) C.個(gè) D.個(gè)11.如圖,在中,點(diǎn)是的中點(diǎn),過(guò)點(diǎn)的直線分別交直線,于不同的兩點(diǎn),若,,則()A.1 B. C.2 D.312.若,滿足約束條件,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則展開(kāi)式中的系數(shù)為_(kāi)_14.在平面直角坐標(biāo)系中,點(diǎn)在單位圓上,設(shè),且.若,則的值為_(kāi)_______________.15.的展開(kāi)式中項(xiàng)的系數(shù)為_(kāi)______.16.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實(shí)數(shù)的最大值.18.(12分)已知橢圓的短軸長(zhǎng)為,離心率,其右焦點(diǎn)為.(1)求橢圓的方程;(2)過(guò)作夾角為的兩條直線分別交橢圓于和,求的取值范圍.19.(12分)已知某種細(xì)菌的適宜生長(zhǎng)溫度為12℃~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個(gè)2530385066120218對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如表所示:20784.11123.8159020.5其中,.(1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類(lèi)型(給出判斷即可,不必說(shuō)明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當(dāng)溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,,參考數(shù)據(jù):.20.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.21.(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點(diǎn).(1)證明:平面(2)若,求二面角的余弦值.22.(10分)已知,,不等式恒成立.(1)求證:(2)求證:.
2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【答案解析】
將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項(xiàng).【題目詳解】由于等差數(shù)列中,所以,化簡(jiǎn)得,所以為.故選:A【答案點(diǎn)睛】本小題主要考查等差數(shù)列的基本量計(jì)算,屬于基礎(chǔ)題.2、A【答案解析】
先求出,再與集合N求交集.【題目詳解】由已知,,又,所以.故選:A.【答案點(diǎn)睛】本題考查集合的基本運(yùn)算,涉及到補(bǔ)集、交集運(yùn)算,是一道容易題.3、D【答案解析】由雙曲線的方程的左右焦點(diǎn)分別為,為雙曲線上的一點(diǎn),為雙曲線的漸近線上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點(diǎn)睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).4、C【答案解析】
由,可得,化簡(jiǎn)利用余弦定理可得,解得.即可得出三角形面積.【題目詳解】解:,,且,,化為:.,解得..故選:.【答案點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.5、A【答案解析】
由,平面,可將三棱錐還原成長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,進(jìn)而求解.【題目詳解】由題,因?yàn)?所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【答案點(diǎn)睛】本題考查三棱錐的外接球體積,考查空間想象能力.6、D【答案解析】
可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時(shí)的導(dǎo)數(shù)情況,再畫(huà)出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對(duì)應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【題目詳解】當(dāng)且時(shí),.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【答案點(diǎn)睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對(duì)應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題7、B【答案解析】
設(shè)貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進(jìn)而可求解.【題目詳解】設(shè)貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的倍.故選:B【答案點(diǎn)睛】本題考查了概率與統(tǒng)計(jì),考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.8、C【答案解析】
作,;,由題意,由二倍角公式即得解.【題目詳解】由題意,,準(zhǔn)線:,作,;,設(shè),故,,.故選:C【答案點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、A【答案解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進(jìn)而求得的斜率.【題目詳解】曲線為圓的上半部分,圓心為,半徑為.設(shè)與曲線相切于點(diǎn),則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【答案點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.10、C【答案解析】
計(jì)算球心連線形成的正四面體相對(duì)棱的距離為cm,得到最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,得到不等式,計(jì)算得到答案.【題目詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個(gè)球兩兩相切,這樣,相鄰的四個(gè)球的球心連線構(gòu)成棱長(zhǎng)為cm的正面體,易求正四面體相對(duì)棱的距離為cm,每裝兩個(gè)球稱(chēng)為“一層”,這樣裝層球,則最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個(gè)球.故選:【答案點(diǎn)睛】本題考查了圓柱和球的綜合問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.11、C【答案解析】
連接AO,因?yàn)镺為BC中點(diǎn),可由平行四邊形法則得,再將其用,表示.由M、O、N三點(diǎn)共線可知,其表達(dá)式中的系數(shù)和,即可求出的值.【題目詳解】連接AO,由O為BC中點(diǎn)可得,,、、三點(diǎn)共線,,.故選:C.【答案點(diǎn)睛】本題考查了向量的線性運(yùn)算,由三點(diǎn)共線求參數(shù)的問(wèn)題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.12、B【答案解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點(diǎn),相應(yīng)坐標(biāo)代入即可求得取值范圍.【題目詳解】畫(huà)出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最小值-5;經(jīng)過(guò)點(diǎn)時(shí),取得最大值5,故.故選:B【答案點(diǎn)睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計(jì)算公式,求出展開(kāi)式中的系數(shù).【題目詳解】∵已知,則,
它表示4個(gè)因式的乘積.
故其中有2個(gè)因式取,一個(gè)因式取,剩下的一個(gè)因式取1,可得的項(xiàng).
故展開(kāi)式中的系數(shù).
故答案為:1.【答案點(diǎn)睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計(jì)算公式,屬于中檔題.14、【答案解析】
根據(jù)三角函數(shù)定義表示出,由同角三角函數(shù)關(guān)系式結(jié)合求得,而,展開(kāi)后即可由余弦差角公式求得的值.【題目詳解】點(diǎn)在單位圓上,設(shè),由三角函數(shù)定義可知,因?yàn)?,則,所以由同角三角函數(shù)關(guān)系式可得,所以故答案為:.【答案點(diǎn)睛】本題考查了三角函數(shù)定義,同角三角函數(shù)關(guān)系式的應(yīng)用,余弦差角公式的應(yīng)用,屬于中檔題.15、40【答案解析】
根據(jù)二項(xiàng)定理展開(kāi)式,求得r的值,進(jìn)而求得系數(shù).【題目詳解】根據(jù)二項(xiàng)定理展開(kāi)式的通項(xiàng)式得所以,解得所以系數(shù)【答案點(diǎn)睛】本題考查了二項(xiàng)式定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.16、【答案解析】
,可得在時(shí),最小值為,時(shí),要使得最小值為,則對(duì)稱(chēng)軸在1的右邊,且,求解出即滿足最小值為.【題目詳解】當(dāng),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對(duì)稱(chēng)軸要滿足并且,即,解得.【答案點(diǎn)睛】本題考查分段函數(shù)的最值問(wèn)題,對(duì)每段函數(shù)先進(jìn)行分類(lèi)討論,找到每段的最小值,然后再對(duì)兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)2;(2)【答案解析】分析:(1)將轉(zhuǎn)化為分段函數(shù),求函數(shù)的最小值(2)分離參數(shù),利用基本不等式證明即可.詳解:(Ⅰ)證明:,顯然在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,即.(Ⅱ)因?yàn)楹愠闪ⅲ院愠闪?,?dāng)且僅當(dāng)時(shí),取得最小值,所以,即實(shí)數(shù)的最大值為.點(diǎn)睛:本題主要考查含兩個(gè)絕對(duì)值的函數(shù)的最值和不等式的應(yīng)用,第二問(wèn)恒成立問(wèn)題分離參數(shù),利用基本不等式求解很關(guān)鍵,屬于中檔題.18、(1);(2).【答案解析】
(1)由已知短軸長(zhǎng)求出,離心率求出關(guān)系,結(jié)合,即可求解;(2)當(dāng)直線的斜率都存在時(shí),不妨設(shè)直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長(zhǎng)公式求出,斜率為,求出,得到關(guān)于的表達(dá)式,根據(jù)表達(dá)式的特點(diǎn)用“”判別式法求出范圍,當(dāng)有一斜率不存在時(shí),另一條斜率為,根據(jù)弦長(zhǎng)公式,求出,即可求出結(jié)論.【題目詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當(dāng)直線的斜率都存在時(shí),由對(duì)稱(chēng)性不妨設(shè)直線的方程為,由,,設(shè),則,則,由橢圓對(duì)稱(chēng)性可設(shè)直線的斜率為,則,.令,則,當(dāng)時(shí),,當(dāng)時(shí),由得,所以,即,且.②當(dāng)直線的斜率其中一條不存在時(shí),根據(jù)對(duì)稱(chēng)性不妨設(shè)設(shè)直線的方程為,斜率不存在,則,,此時(shí).若設(shè)的方程為,斜率不存在,則,綜上可知的取值范圍是.【答案點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系,注意根與系數(shù)關(guān)系、弦長(zhǎng)公式、函數(shù)最值、橢圓性質(zhì)的合理應(yīng)用,意在考查邏輯推理、計(jì)算求解能力,屬于難題.19、(1)作圖見(jiàn)解析;更適合(2)(3)預(yù)報(bào)值為245【答案解析】
(1)由散點(diǎn)圖即可得到答案;(2)把兩邊取自然對(duì)數(shù),得,由計(jì)算得到,再將代入可得,最終求得,即;(3)將代入中計(jì)算即可.【題目詳解】解:(1)繪出關(guān)于的散點(diǎn)圖,如圖所示:由散點(diǎn)圖可知,更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于的回歸方程類(lèi)型;(2)把兩邊取自然對(duì)數(shù),得,即,由.∴,則關(guān)于的回歸方程為;(3)當(dāng)時(shí),計(jì)算可得;即溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為245.【答案點(diǎn)睛】本題考查求非線性回歸方程及其應(yīng)用的問(wèn)題,考查學(xué)生數(shù)據(jù)處理能力及運(yùn)算能力,是一道中檔題.20、(1)答案見(jiàn)解析.(2)【答案解析】
(1)通過(guò)證明平面,證得,證得,由此證得平面,進(jìn)而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【題目詳解】(1)因?yàn)?,所以平面,因?yàn)槠矫?,所以.因?yàn)?,點(diǎn)為中點(diǎn),所以.因?yàn)椋云矫妫驗(yàn)槠矫?,所以平面平面.?)以點(diǎn)為坐標(biāo)原點(diǎn),直線分別為軸,軸,過(guò)點(diǎn)與平面垂直的直線為軸,建立空間直角坐標(biāo)系,則,,,,,,,,,,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【答案點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)詳見(jiàn)解析
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級(jí)數(shù)學(xué)上冊(cè)蘇教版《釘子板上的多邊形》聽(tīng)評(píng)課記錄
- 八年級(jí)數(shù)學(xué)上冊(cè) 14.3 因式分解 14.3.1 提公因式法聽(tīng)評(píng)課記錄 新人教版
- 湘教版數(shù)學(xué)七年級(jí)上冊(cè)2.4《整式》聽(tīng)評(píng)課記錄
- 青島版數(shù)學(xué)七年級(jí)下冊(cè)12.1《平方差公式》聽(tīng)評(píng)課記錄
- 魯教版地理六年級(jí)下冊(cè)7.4《俄羅斯》聽(tīng)課評(píng)課記錄1
- 人民版九年級(jí)政治全冊(cè)第三單元第八課依法治國(guó)第3-4喜中有憂我們共同的責(zé)任聽(tīng)課評(píng)課記錄
- 中圖版地理八年級(jí)下冊(cè)7.4《巴西》聽(tīng)課評(píng)課記錄
- 鋁合金窗產(chǎn)品質(zhì)量監(jiān)督抽查實(shí)施細(xì)則
- 小學(xué)二年級(jí)數(shù)學(xué)口算練習(xí)題
- 一年級(jí)英語(yǔ)聽(tīng)評(píng)課記錄
- 商務(wù)星球版地理八年級(jí)下冊(cè)全冊(cè)教案
- 天津市河西區(qū)2024-2025學(xué)年四年級(jí)(上)期末語(yǔ)文試卷(含答案)
- 2025年空白離婚協(xié)議書(shū)
- 校長(zhǎng)在行政會(huì)上總結(jié)講話結(jié)合新課標(biāo)精神給學(xué)校管理提出3點(diǎn)建議
- 北京市北京四中2025屆高三第四次模擬考試英語(yǔ)試卷含解析
- 2024年快遞行業(yè)無(wú)人機(jī)物流運(yùn)輸合同范本及法規(guī)遵循3篇
- T-CSUS 69-2024 智慧水務(wù)技術(shù)標(biāo)準(zhǔn)
- 2025年護(hù)理質(zhì)量與安全管理工作計(jì)劃
- 地下商業(yè)街的規(guī)劃設(shè)計(jì)
- 2024-2030年全球及中國(guó)低密度聚乙烯(LDPE)行業(yè)需求動(dòng)態(tài)及未來(lái)發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 傷殘撫恤管理辦法實(shí)施細(xì)則
評(píng)論
0/150
提交評(píng)論