![鍵結(jié)軌道理論在量子半導(dǎo)體之應(yīng)用與計(jì)算課件_第1頁](http://file4.renrendoc.com/view/71723cbb4805303496c4c8f5dc951c65/71723cbb4805303496c4c8f5dc951c651.gif)
![鍵結(jié)軌道理論在量子半導(dǎo)體之應(yīng)用與計(jì)算課件_第2頁](http://file4.renrendoc.com/view/71723cbb4805303496c4c8f5dc951c65/71723cbb4805303496c4c8f5dc951c652.gif)
![鍵結(jié)軌道理論在量子半導(dǎo)體之應(yīng)用與計(jì)算課件_第3頁](http://file4.renrendoc.com/view/71723cbb4805303496c4c8f5dc951c65/71723cbb4805303496c4c8f5dc951c653.gif)
![鍵結(jié)軌道理論在量子半導(dǎo)體之應(yīng)用與計(jì)算課件_第4頁](http://file4.renrendoc.com/view/71723cbb4805303496c4c8f5dc951c65/71723cbb4805303496c4c8f5dc951c654.gif)
![鍵結(jié)軌道理論在量子半導(dǎo)體之應(yīng)用與計(jì)算課件_第5頁](http://file4.renrendoc.com/view/71723cbb4805303496c4c8f5dc951c65/71723cbb4805303496c4c8f5dc951c655.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
TheApplicationandCalculationofBondOrbitalModelonQuantumSemiconductor
鍵結(jié)軌道理論在量子半導(dǎo)體之應(yīng)用與計(jì)算TheApplicationandCalculatio1IntroductionIntroduction2WhyisthechoosingtheBOM?ahybridorlinkbetweenthek.pandthetight-bindingmethodscombiningthevirtuesofthetwoaboveapproaches--thecomputationaleffortiscomparabletothek.p
method--avoidingthetediousfittingprocedurelikethe
tight-bindingmethod--itisadequateforultra-thinsuperlattice--theboundaryconditionbetweenmaterialsistreatedin
thestraight-forwardmanner--itsflexibilitytoaccommodateotherwiseawkward
geometriesWhyisthechoosingtheBOM?a3Theimprovementofthebondorbitalmodel(BOM):the(hkl)-orientedBOMHamiltoniantheBOMHamiltonianwiththesecond-neighborinteractiontheBOMintheantibondingorbitalframeworktheBOMwithmicroscopicinterfaceperturbation(MBOM)thek.pformalismfromtheBOMTheimprovementofthebondor4BondOrbitalModelBondOrbitalModel5Whatisthebondorbitalmodel?atight-binding-likeframeworkwiththes-andp-likebasisorbitaltheinteractionparametersdirectlyrelatedtotheLuttingerparametersWhatisthebondorbitalmodel6Zinc-blendeLatticeStructure:Zinc-blendeLatticeStructure:7TheBOMmatrixelements:where:TheinteractionparametersEsandEp:on-siteparameters
Ess,Esx,Exx,Exy,andEzz:thenearest-neighbor
interactionparametersTheBOMmatrixelements:where:8TheBOMmatrix:wherewithH(k)=TheBOMmatrix:wherewithH(k)=9TakingTaylor-expansionontheBOMmatrix:
(uptothesecondorder)whereandH(k)=---TakingTaylor-expansiononthe10RelationsbetweenBOMparametersandLuttingerparametersVBMCVBM/3RelationsbetweenBOMparamete11BulkBandstructure:
(001)-orientationBulkBandstructure:
(001)-orie12SuperlatticeBandstructure:
(001)-orientationSuperlatticeBandstructure:
(013Theorthogonaltransformationmatrix:wheretheanglesandarethepolarandazimuthalanglesofthenewgrowthaxisrelativetotheprimarycrystallographicaxes.
Theorthogonaltransformation14BulkInAsBandstructure:
(111),(110),(112),(113),and(115)-orientationBulkInAsBandstructure:
(111)15InAs/GaSbSuperlatticeBandstructure:
(111),(110),(112),(113),and(115)-orientationInAs/GaSbSuperlatticeBandstr16Thesecond-neighborbondorbital(SBO)model:WhereandH(k)=Thesecond-neighborbondorbit17BulkBandstructure:
WiththeSecondNearestNeighborInteraction:BulkBandstructure:
WiththeS18BulkBandstructureintheAntibondingOrbitalModel:BulkBandstructureintheAnti19BondOrbitalModelwithMicroscopicEffectsBondOrbitalModelwithMicros20Forthecommonatom(CA)heterostructureeg:(AlGa)As/GaAs,InAs/GaAsForthenocommonatom(NCA)heterostructureeg:InAs/GaSb,(InGa)/As/InP--InAs/GaSbwithIn-SbandGa-Asheterobondsattheinterfaces--(InGa)As/InPwith(InGa)-PandIn-AsheterobondsattheinterfacesForthecommonatom(CA)heter21The(001)InAs/GaSbsuperlattice:theplanesofatomsarestackedinthegrowthdirectionasfollows...GaSbGaSbInAsInAs....fortheoneinterface;and...InAsInAsGaSbGaSb....forthenextinterface.The(001)InAs/GaSbsuperlatti22Theextractingofmicroscopicinformation:thes-andp-likebondorbitalsexpandedintermsofthetetrahedral(anti)bondingorbitals
andinsteadofscalarpotentialbypotentialoperator~thisistheso-calledmodifiedbondorbitalmodel(MBOM)~=(+++),=(+--),=(-+-),=(--+),(R)+),Theextractingofmicroscopic23ThepotentialtermoftheMBOM:apotentialmatrixform,butnotascalarpotentialVV4X4(Rz)=V+0000000000ThepotentialtermoftheMBOM24InAs/GaSbSuperlatticeBandstructure:
(calculatedwiththeBOMandMBOM)InAs/GaSbSuperlatticeBandstr25OrientationDependenceofInterfaceInversionAsymmetryEffectonInGaAs/InPQuantumWellsOrientationDependenceofInte26Inversionasymmetryeffect:themicroscopiccrystalstructure:Dresselhauseffectthemacroscopicconfiningpotential:Rashbaeffecttheinversionasymmetrybetweentwointerfaces:NCAheterostructures--thezero-fieldspinsplitting--in-planeanisotropyInversionasymmetryeffect:the27The73-?-wide(25monolayers)(001)InGaAs/InPQW:Aandtheplanesofatomsarestackedinthegrowthdirectionasfollows:M+1
CDCDCDA
BABAB
M
forthe(InGa)P-likeinterface;and
N+1
ABABABC
DCDCD
N
fortheInAs-likeinterface,whereA=(InGa),B=As,C=In,andD=P.TheMth(orNth)monolayerislocatedattheleft(orright)interface,whereN=M+25.The73-?-wide(25monolayers)28WhereRzisthezcomponentoflatticesiter,i.e.,R=R//+Rz?,andalsotheU(fortheconductionband)andtheV(forthevalenceband)denotethedifferenceofpotentialenergybetweentheheterobondspeciesandthehostmaterialattheinterfaces.00000000000000000000000000WhereRzisthezcomponentof29(001)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(001)InGaAs/InPQuantumWell30SpinSplittingoftheLowestConductionSubband:
((001)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC31Whenthein-planewavevectormovesaroundthecircle(=0
2),themixingelementsinEq.(4.2)shouldbestrictlywrittenasforthe(3,5)and(4,6)matrixelementsandforthe(5,3)and(6,4)matrixelements.Therefore,themixingstrengthdependsontheazimuthalangleMoreover,theandtermsequalto–1fororand1foror.Whenthein-planewavevector32The71-?-wide(21monolayers)(111)InGaAs/InPQW:Thesameorderofatomicplanesasthe(001)QWAandThe71-?-wide(21monolayers)33theheterobondsinthe[111]growthdirection:theheterobondsaretheremainingthreebondsother
thanthebondalongthe[111]direction:00000000000000000000000000000000000000000000000000000000000000theheterobondsinthe[111]g34(111)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(111)InGaAs/InPQuantumWell35SpinSplittingoftheLowestConductionSubband:
((111)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC36The73-?-wide(35monolayers)(110)InGaAs/InPQW:=+++
=-++-
=-+
and
=-acrossperfect(110)interfaces,planesofatomsarearrangedintheorderof:
M+1
DCDCBABA
CDCDA
BAB
M
fortheleftinterfaceand
N
ABABCDCD
BABADCDC
N+1
fortherightinterface,whereN=M+35The73-?-wide(35monolayers)37wheretheuppersignisusedfortheMthandNthmonolayer,andthelowersignisusedforthe(M+1)thand(N+1)thmonolayer.0000000000000000000000wheretheuppersignisusedf38(110)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(110)InGaAs/InPQuantumWell39SpinSplittingoftheLowestConductionSubband:((110)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC40SymmetrypointgroupofQWs.MicroscopicBOMBulkTdOhCAQW(001)D2dD4hNCAQW(001)C2vD4hNCAQW(111)C3vD3dNCAQW(110)C1horC1D2hSymmetrypointgroupofQWs.Mi41Dresselhaus-likeSpinSplittingDresselhaus-likeSpinSplittin42Dresselhauseffect:Thedegeneracybandsofthezinc-blendsbulkareliftedexceptforthewavevectoralongthe<001>and<111>directions,andthisistheso-calledDresselhauseffect.Dresselhauseffect:Thedeg43SubbandStructureof(110)InAs/GaSbSuperlattice:
(calculatedwiththeBOMandMBOM)SubbandStructureof(110)InA44MBOMBandstructureofInAs/GaSbSuperlattice
(grownonthe(001),(111),(113),and(115)-orientation)MBOMBandstructureofInAs/GaS45MicroscopicInterfaceEffecton(Anti)crossingBehaviorandSemiconductor-semimetalTransitioninInAs/GaSbSuperlatticesMicroscopicInterfaceEffecto46ThisMBOMmodelisbasedontheframeworkofthebondorbitalmodel(BOM)andcombinestheconceptoftheheuristicHbfmodeltoincludethemicroscopicinterfaceeffect.TheMBOMprovidesthedirectinsightintothemicroscopicsymmetryofthecrystalchemicalbondsinthevicinityoftheheterostructureinterfaces.Moreover,theMBOMcaneasilycalculatevariousgrowthdirectionsofheterostructurestoexploretheinfluenceofinterfaceperturbation.Inthischapter,byapplyingtheproposedMBOM,wewillcalculateanddiscussthe(anti)crossingbehaviorandthesemiconductortosemimetaltransitiononInAs/GaSbSLsgrownonthe(001)-,(111)-,and(110)-orientedsubstrates.TheeffectofinterfaceperturbationonInAs/GaSbwillbestudiedindetail.ThisMBOMmodelisbasedonth47(Anti)crossingBehaviorofInAs/GaSbSuperlattice(Anti)crossingBehaviorofInA48(001)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(001)SemimetalPhenomenon:
(c49(111)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(111)SemimetalPhenomenon:
(c50(110)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(110)SemimetalPhenomenon:
(c51k.pFiniteDifferenceMethodk.pFiniteDifferenceMethod52theBOMeigenfunctionsmustbeBlochfunctions,whichcanbeexpressedaswherethenotation
isusedforan-like(=s,x,y,z)bondorbitallocatedatafcclatticesiteR,kisthewavevector,andNisthetotalnumberoffcclatticepoints.
theBOMmatrixelementswiththebond-orbitalbasis(withoutspin-orbitcoupling)aregivenby(ink-space)WhereistherelativepositionvectorofthelatticesiteRtotheoriginand(seechapter2)istheinteractionparameter
takingtheTaylor-expansionontheBOMHamiltonianandomittingtermshigherthanthesecondorderink,thegeneralk?pformalismiseasilyobtained,whosematrixelementscanbewrittenas[11]theBOMeigenfunctionsmustbe53thekinetictermoftheusualk˙pHamiltonian[inthebasis
)canbewrittenasCT0T00S0000000RRP+QBP-QP-Q-C-BP+Qwherethesuperscript*meansHermitianconjugate,
P=Ev
–[(2Exx+Ezz)/3]a2k2,
Q=–(Exx
–Ezz),a2(k2-)/12,
R=Ec
–Essa2k2
S=–Esxa
(kx+),
T=Esx/,
B=Exya2(–),
C=[(Exx
–Ezz)(–)/4–Exy],
and
Ec=Es+12Ess,Ev=Ep+8Exx+4Ezz.thekinetictermoftheusual54thetime-independentequationcanbeexpressedasafunctionofkz,thatis
]F=EFWiththereplacementofkzby,thisequationcanbeexpressedas=
and=theSchr?dingerequationcanbewritteninthelayer-orbitalbasisaswhereistheinteractionbetweenandlayersF=EFThek.pfinitedifferencemethodthetime-independentequation55OptimumStepLengthintheKPFDMethodOptimumStepLengthintheKPF56the-dependenttermsofthek˙pHamiltoniancanbewrittenasandwhereisthespacingofmonolayersalongthegrowthdirectionthereplacementofbyandthentreatedbythefinite-differencecalculation,wehave
andwhereisthepseudo-layer,thesteplengthhisthespacingbetweentwoadjacentpseudo-layers,andFisthecorrespondingstatefunction.Thereasonoftheoptimumsteplength==the-dependenttermsofth57theSchr?dingerequationsolvedbytheKPFDmethodcanbewrittenas
whereistheinteractionbetweenandlayers;theintergernis1forthe(001)and(111)samples,2forthe(110)and(113)samples,3forthe(112)and(115)samples,…,etc.Thatistosay,theon-siteand12nearest-neighborbondorbitalsbelongrespectivelyto(2n+1)layers,whichareeasilyclassifiedaccordingtothelongitudinalcomponentofthebond-orbitalpositionvector.Thesteplengthbetweentheon-sitelayerandthenearest-,second-,orthird-neighborinteractionlayeris1ML,2ML,or3MLspacinginthelongitudinaldirection,respectively.theSchr?dingerequationsolv58Multi-stepLengthinthe(110)KPFDMethod:Multi-stepLengthinthe(110)59Multi-stepLengthinthe(112)KPFDMethod:Multi-stepLengthinthe(112)60Multi-stepLengthinthe(113)KPFDMethod:Multi-stepLengthinthe(113)61Multi-stepLengthinthe(115)KPFDMethod:Multi-stepLengthinthe(115)62InAsBulkBandstructure
(calculatedwiththek˙pandSBOmethod)InAsBulkBandstructure
(calcu63InAsBulkBandstructure
(calculatedwiththeSBOandKPSFDmethod)InAsBulkBandstructure
(calcu64AnisotropicOpticalMatrixElementsinQuantumWellswithVariousSubstrateOrientationsAnisotropicOpticalMatrixEle65The(11N)44LuttingerHamiltonianattheBrillouin-zonecenter(k1=k2=0)Hk.p(k1=k2=0)=(Ep+8Exx+4Ezz)-+++
whereaisthelatticeconstant,istheanglebetweenthezandX3axes,whichisequaltoThe(11N)44LuttingerHamilt66theopticaltransitionmatrixelementbetweentheconductionandthevalencebandscanbewrittenaswhereisthemomentumoperatorandêistheunitpolarizationvector.thein-planeopticalanisotropycanbecalculatedaswhereandarethesquaredmatrixelementsforthepolarizationparallelandperpendicularto,respectively.theopticaltransitionmatrix67AnisotropicOpticalMatrixElements(inthe(11N)-orientationAnisotropicOpticalMatrixEle68TheApplicationandCalculationofBondOrbitalModelonQuantumSemiconductor
鍵結(jié)軌道理論在量子半導(dǎo)體之應(yīng)用與計(jì)算TheApplicationandCalculatio69IntroductionIntroduction70WhyisthechoosingtheBOM?ahybridorlinkbetweenthek.pandthetight-bindingmethodscombiningthevirtuesofthetwoaboveapproaches--thecomputationaleffortiscomparabletothek.p
method--avoidingthetediousfittingprocedurelikethe
tight-bindingmethod--itisadequateforultra-thinsuperlattice--theboundaryconditionbetweenmaterialsistreatedin
thestraight-forwardmanner--itsflexibilitytoaccommodateotherwiseawkward
geometriesWhyisthechoosingtheBOM?a71Theimprovementofthebondorbitalmodel(BOM):the(hkl)-orientedBOMHamiltoniantheBOMHamiltonianwiththesecond-neighborinteractiontheBOMintheantibondingorbitalframeworktheBOMwithmicroscopicinterfaceperturbation(MBOM)thek.pformalismfromtheBOMTheimprovementofthebondor72BondOrbitalModelBondOrbitalModel73Whatisthebondorbitalmodel?atight-binding-likeframeworkwiththes-andp-likebasisorbitaltheinteractionparametersdirectlyrelatedtotheLuttingerparametersWhatisthebondorbitalmodel74Zinc-blendeLatticeStructure:Zinc-blendeLatticeStructure:75TheBOMmatrixelements:where:TheinteractionparametersEsandEp:on-siteparameters
Ess,Esx,Exx,Exy,andEzz:thenearest-neighbor
interactionparametersTheBOMmatrixelements:where:76TheBOMmatrix:wherewithH(k)=TheBOMmatrix:wherewithH(k)=77TakingTaylor-expansionontheBOMmatrix:
(uptothesecondorder)whereandH(k)=---TakingTaylor-expansiononthe78RelationsbetweenBOMparametersandLuttingerparametersVBMCVBM/3RelationsbetweenBOMparamete79BulkBandstructure:
(001)-orientationBulkBandstructure:
(001)-orie80SuperlatticeBandstructure:
(001)-orientationSuperlatticeBandstructure:
(081Theorthogonaltransformationmatrix:wheretheanglesandarethepolarandazimuthalanglesofthenewgrowthaxisrelativetotheprimarycrystallographicaxes.
Theorthogonaltransformation82BulkInAsBandstructure:
(111),(110),(112),(113),and(115)-orientationBulkInAsBandstructure:
(111)83InAs/GaSbSuperlatticeBandstructure:
(111),(110),(112),(113),and(115)-orientationInAs/GaSbSuperlatticeBandstr84Thesecond-neighborbondorbital(SBO)model:WhereandH(k)=Thesecond-neighborbondorbit85BulkBandstructure:
WiththeSecondNearestNeighborInteraction:BulkBandstructure:
WiththeS86BulkBandstructureintheAntibondingOrbitalModel:BulkBandstructureintheAnti87BondOrbitalModelwithMicroscopicEffectsBondOrbitalModelwithMicros88Forthecommonatom(CA)heterostructureeg:(AlGa)As/GaAs,InAs/GaAsForthenocommonatom(NCA)heterostructureeg:InAs/GaSb,(InGa)/As/InP--InAs/GaSbwithIn-SbandGa-Asheterobondsattheinterfaces--(InGa)As/InPwith(InGa)-PandIn-AsheterobondsattheinterfacesForthecommonatom(CA)heter89The(001)InAs/GaSbsuperlattice:theplanesofatomsarestackedinthegrowthdirectionasfollows...GaSbGaSbInAsInAs....fortheoneinterface;and...InAsInAsGaSbGaSb....forthenextinterface.The(001)InAs/GaSbsuperlatti90Theextractingofmicroscopicinformation:thes-andp-likebondorbitalsexpandedintermsofthetetrahedral(anti)bondingorbitals
andinsteadofscalarpotentialbypotentialoperator~thisistheso-calledmodifiedbondorbitalmodel(MBOM)~=(+++),=(+--),=(-+-),=(--+),(R)+),Theextractingofmicroscopic91ThepotentialtermoftheMBOM:apotentialmatrixform,butnotascalarpotentialVV4X4(Rz)=V+0000000000ThepotentialtermoftheMBOM92InAs/GaSbSuperlatticeBandstructure:
(calculatedwiththeBOMandMBOM)InAs/GaSbSuperlatticeBandstr93OrientationDependenceofInterfaceInversionAsymmetryEffectonInGaAs/InPQuantumWellsOrientationDependenceofInte94Inversionasymmetryeffect:themicroscopiccrystalstructure:Dresselhauseffectthemacroscopicconfiningpotential:Rashbaeffecttheinversionasymmetrybetweentwointerfaces:NCAheterostructures--thezero-fieldspinsplitting--in-planeanisotropyInversionasymmetryeffect:the95The73-?-wide(25monolayers)(001)InGaAs/InPQW:Aandtheplanesofatomsarestackedinthegrowthdirectionasfollows:M+1
CDCDCDA
BABAB
M
forthe(InGa)P-likeinterface;and
N+1
ABABABC
DCDCD
N
fortheInAs-likeinterface,whereA=(InGa),B=As,C=In,andD=P.TheMth(orNth)monolayerislocatedattheleft(orright)interface,whereN=M+25.The73-?-wide(25monolayers)96WhereRzisthezcomponentoflatticesiter,i.e.,R=R//+Rz?,andalsotheU(fortheconductionband)andtheV(forthevalenceband)denotethedifferenceofpotentialenergybetweentheheterobondspeciesandthehostmaterialattheinterfaces.00000000000000000000000000WhereRzisthezcomponentof97(001)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(001)InGaAs/InPQuantumWell98SpinSplittingoftheLowestConductionSubband:
((001)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC99Whenthein-planewavevectormovesaroundthecircle(=0
2),themixingelementsinEq.(4.2)shouldbestrictlywrittenasforthe(3,5)and(4,6)matrixelementsandforthe(5,3)and(6,4)matrixelements.Therefore,themixingstrengthdependsontheazimuthalangleMoreover,theandtermsequalto–1fororand1foror.Whenthein-planewavevector100The71-?-wide(21monolayers)(111)InGaAs/InPQW:Thesameorderofatomicplanesasthe(001)QWAandThe71-?-wide(21monolayers)101theheterobondsinthe[111]growthdirection:theheterobondsaretheremainingthreebondsother
thanthebondalongthe[111]direction:00000000000000000000000000000000000000000000000000000000000000theheterobondsinthe[111]g102(111)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(111)InGaAs/InPQuantumWell103SpinSplittingoftheLowestConductionSubband:
((111)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC104The73-?-wide(35monolayers)(110)InGaAs/InPQW:=+++
=-++-
=-+
and
=-acrossperfect(110)interfaces,planesofatomsarearrangedintheorderof:
M+1
DCDCBABA
CDCDA
BAB
M
fortheleftinterfaceand
N
ABABCDCD
BABADCDC
N+1
fortherightinterface,whereN=M+35The73-?-wide(35monolayers)105wheretheuppersignisusedfortheMthandNthmonolayer,andthelowersignisusedforthe(M+1)thand(N+1)thmonolayer.0000000000000000000000wheretheuppersignisusedf106(110)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(110)InGaAs/InPQuantumWell107SpinSplittingoftheLowestConductionSubband:((110)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC108SymmetrypointgroupofQWs.MicroscopicBOMBulkTdOhCAQW(001)D2dD4hNCAQW(001)C2vD4hNCAQW(111)C3vD3dNCAQW(110)C1horC1D2hSymmetrypointgroupofQWs.Mi109Dresselhaus-likeSpinSplittingDresselhaus-likeSpinSplittin110Dresselhauseffect:Thedegeneracybandsofthezinc-blendsbulkareliftedexceptforthewavevectoralongthe<001>and<111>directions,andthisistheso-calledDresselhauseffect.Dresselhauseffect:Thedeg111SubbandStructureof(110)InAs/GaSbSuperlattice:
(calculatedwiththeBOMandMBOM)SubbandStructureof(110)InA112MBOMBandstructureofInAs/GaSbSuperlattice
(grownonthe(001),(111),(113),and(115)-orientation)MBOMBandstructureofInAs/GaS113MicroscopicInterfaceEffecton(Anti)crossingBehaviorandSemiconductor-semimetalTransitioninInAs/GaSbSuperlatticesMicroscopicInterfaceEffecto114ThisMBOMmodelisbasedontheframeworkofthebondorbitalmodel(BOM)andcombinestheconceptoftheheuristicHbfmodeltoincludethemicroscopicinterfaceeffect.TheMBOMprovidesthedirectinsightintothemicroscopicsymmetryofthecrystalchemicalbondsinthevicinityoftheheterostructureinterfaces.Moreover,theMBOMcaneasilycalculatevariousgrowthdirectionsofheterostructurestoexploretheinfluenceofinterfaceperturbation.Inthischapter,byapplyingtheproposedMBOM,wewillcalculateanddiscussthe(anti)crossingbehaviorandthesemiconductortosemimetaltransitiononInAs/GaSbSLsgrownonthe(001)-,(111)-,and(110)-orientedsubstrates.TheeffectofinterfaceperturbationonInAs/GaSbwillbestudiedindetail.ThisMBOMmodelisbasedonth115(Anti)crossingBehaviorofInAs/GaSbSuperlattice(Anti)crossingBehaviorofInA116(001)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(001)SemimetalPhenomenon:
(c117(111)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(111)SemimetalPhenomenon:
(c118(110)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(110)SemimetalPhenomenon:
(c119k.pFiniteDifferenceMethodk.pFiniteDifferenceMethod120theBOMeigenfunctionsmustbeBlochfunctions,whichcanbeexpressedaswherethenotation
isusedforan-like(=s,x,y,z)bondorbitallocatedatafcclatticesiteR,kisthewavevector,andNisthetotalnumberoffcclatticepoints.
theBOMmatrixelementswiththebond-orbitalbasis(withoutspin-orbitcoupling)aregivenby(ink-space)WhereistherelativepositionvectorofthelatticesiteRtotheoriginand(seechapter2)istheinteractionparameter
takingtheTaylor-expansionontheBOMHamiltonianandomittingtermshigherthanthesecondorderink,thegeneralk?pformalismiseasilyobtained,whosematrixelementscanbewrittenas[11]theBOMeigenfunctionsmustbe121thekinetictermoftheusualk˙pHamiltonian[inthebasis
)canbewrittenasCT0T00S0000000RRP+QBP-QP-Q-C-BP+Qwherethesuperscript*meansHermitianconjugate,
P=Ev
–[(2Exx+Ezz)/3]a2k2,
Q=–(Exx
–Ezz),a2(k2-)/12,
R=Ec
–Essa2k2
S=–Esxa
(kx+),
T=Esx/,
B=Exya2(–),
C=[(Exx
–Ezz)(–)/4–Exy],
and
Ec=Es+12Ess,Ev=Ep+8Exx+4Ezz.thekinetictermoftheusual122thetime-independentequationcanbeexpressedasafunctionofkz,thatis
]F=EFWiththereplacementofkzby,thisequationcanbeexpressedas=
and=theSchr?dingerequationc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 讓課堂充滿生機(jī)與活力
- 2025年槍托項(xiàng)目可行性研究報(bào)告
- 2025年度航空航天裝備研發(fā)合作合同
- 信用社終止貸款合同范本
- 儲(chǔ)值合同范本
- 保時(shí)捷買賣合同范本
- 公司對(duì)個(gè)人轉(zhuǎn)讓合同范例
- 優(yōu)信網(wǎng)出租車合同范例
- 交通管制合同范本
- 企業(yè)公司聘用合同范本
- 高職應(yīng)用語文教程(第二版)教案 3管晏列傳
- 高中物理《光電效應(yīng)》
- 烹飪實(shí)訓(xùn)室安全隱患分析報(bào)告
- 《金屬加工的基礎(chǔ)》課件
- 運(yùn)輸行業(yè)春節(jié)安全生產(chǎn)培訓(xùn) 文明駕駛保平安
- 體驗(yàn)式沙盤-收獲季節(jié)
- 找人辦事協(xié)議
- 老年護(hù)理陪護(hù)培訓(xùn)課件
- 醬香型白酒工廠設(shè)計(jì)
- 第3章 環(huán)境感知技術(shù)
- 牽引管道孔壁與管道外壁之間注漿技術(shù)方案
評(píng)論
0/150
提交評(píng)論