2022年甘肅省定西市數學高三上期末質量跟蹤監(jiān)視試題含解析_第1頁
2022年甘肅省定西市數學高三上期末質量跟蹤監(jiān)視試題含解析_第2頁
2022年甘肅省定西市數學高三上期末質量跟蹤監(jiān)視試題含解析_第3頁
2022年甘肅省定西市數學高三上期末質量跟蹤監(jiān)視試題含解析_第4頁
2022年甘肅省定西市數學高三上期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A. B. C. D.3.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.4.已知純虛數滿足,其中為虛數單位,則實數等于()A. B.1 C. D.25.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得6.關于函數有下述四個結論:()①是偶函數;②在區(qū)間上是單調遞增函數;③在上的最大值為2;④在區(qū)間上有4個零點.其中所有正確結論的編號是()A.①②④ B.①③ C.①④ D.②④7.我國古代數學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數是()A.2 B.3 C.4 D.18.已知,則的大小關系是()A. B. C. D.9.已知三棱錐中,為的中點,平面,,,則有下列四個結論:①若為的外心,則;②若為等邊三角形,則;③當時,與平面所成的角的范圍為;④當時,為平面內一動點,若OM∥平面,則在內軌跡的長度為1.其中正確的個數是().A.1 B.1 C.3 D.410.若的展開式中含有常數項,且的最小值為,則()A. B. C. D.11.設全集,集合,,則()A. B. C. D.12.設雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.正方體中,是棱的中點,是側面上的動點,且平面,記與的軌跡構成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個側面中,與所成的銳二面角相等的側面共四個.其中正確命題的序號是________.(寫出所有正確命題的序號)14.已知函數,令,,若,表示不超過實數的最大整數,記數列的前項和為,則_________15.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____16.某陶瓷廠準備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經過兩次燒制,當第一次燒制合格后方可進入第二次燒制,再次燒制過程相互獨立.根據該廠現有的技術水平,經過第一次燒制后,甲、乙、丙三件產品合格的概率依次為0.5、0.6、0.4,經過第二次燒制后,甲、乙、丙三件產品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產品合格的概率為________;經過前后兩次燒制后,合格工藝品的件數為,則隨機變量的期望為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,其中.(Ⅰ)若,求函數的單調區(qū)間;(Ⅱ)設.若在上恒成立,求實數的最大值.18.(12分)已知函數.(1)證明:當時,;(2)若函數有三個零點,求實數的取值范圍.19.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.20.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.21.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設,求三棱錐的體積.22.(10分)已知函數.(Ⅰ)求的值;(Ⅱ)若,且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由,可得,解出即可判斷出結論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.【點睛】本題考查了向量數量積運算性質、三角函數求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.2、A【解析】

求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得.故選A.【點睛】本題考查雙曲線的簡單性質的應用,考查了轉化思想以及計算能力,屬于中檔題.對于離心率求解問題,關鍵是建立關于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結合曲線的幾何性質以及題目中的幾何關系建立方程;另一方面,可以從代數的角度,結合曲線方程的性質以及題目中的代數的關系建立方程.3、D【解析】

利用向量運算可得,即,由為的中位線,得到,所以,再根據雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.4、B【解析】

先根據復數的除法表示出,然后根據是純虛數求解出對應的的值即可.【詳解】因為,所以,又因為是純虛數,所以,所以.故選:B.【點睛】本題考查復數的除法運算以及根據復數是純虛數求解參數值,難度較易.若復數為純虛數,則有.5、A【解析】

根據題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數的圖象和性質,意在考查學生對這些知識的理解掌握水平.6、C【解析】

根據函數的奇偶性、單調性、最值和零點對四個結論逐一分析,由此得出正確結論的編號.【詳解】的定義域為.由于,所以為偶函數,故①正確.由于,,所以在區(qū)間上不是單調遞增函數,所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數,所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區(qū)間,有兩個零點.由于為偶函數,所以在區(qū)間有兩個零點.故在區(qū)間上有4個零點.所以④正確.綜上所述,正確的結論序號為①④.故選:C【點睛】本小題主要考查三角函數的奇偶性、單調性、最值和零點,考查化歸與轉化的數學思想方法,屬于中檔題.7、B【解析】

將問題轉化為等比數列問題,最終變?yōu)榍蠼獾缺葦盗谢玖康膯栴}.【詳解】根據實際問題可以轉化為等比數列問題,在等比數列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數列的實際應用,難度較易.熟悉等比數列中基本量的計算,對于解決實際問題很有幫助.8、B【解析】

利用函數與函數互為反函數,可得,再利用對數運算性質比較a,c進而可得結論.【詳解】依題意,函數與函數關于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數、指數的大小比較,屬于基礎題.9、C【解析】

由線面垂直的性質,結合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質可判斷②錯誤;由線面角的定義和轉化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設與平面所成角為可得,設到平面的距離為由可得即有,當且僅當取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點睛】此題考查立體幾何中與點、線、面位置關系有關的命題的真假判斷,處理這類問題,可以用已知的定理或性質來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.10、C【解析】展開式的通項為,因為展開式中含有常數項,所以,即為整數,故n的最小值為1.所以.故選C點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第項,由特定項得出值,最后求出其參數.11、D【解析】

求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數學運算的能力,屬于中檔題.12、A【解析】

根據雙曲線的標準方程求出右頂點、右焦點的坐標,再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標,最后利用三角形的面積公式進行求解即可.【詳解】由雙曲線的標準方程可知中:,因此右頂點的坐標為,右焦點的坐標為,雙曲線的漸近線方程為:,根據雙曲線和漸近線的對稱性不妨設點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點睛】本題考查了雙曲線的漸近線方程的應用,考查了兩直線平行的性質,考查了數學運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、①②③④【解析】

取中點,中點,中點,先利用中位線的性質判斷點的運動軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質即可判斷;②直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,進而求解;③由,取為中點,則,則即為與平面所成的銳二面角,進而求解;④由平行的性質及圖形判斷即可.【詳解】取中點,連接,則,所以,所以平面即為平面,取中點,中點,連接,則易證得,所以平面平面,所以點的運動軌跡為線段,平面即為平面.①取為中點,因為是等腰三角形,所以,又因為,所以,故①正確;②直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,當點為中點時,直線與直線所成角最小,此時,;當點與點或點重合時,直線與直線所成角最大,此時,所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點,則即為與平面所成的銳二面角,,所以③正確;④正方體的各個側面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點睛】本題考查直線與平面的空間位置關系,考查異面直線成角,二面角,考查空間想象能力與轉化思想.14、4【解析】

根據導數的運算,結合數列的通項公式的求法,求得,,,進而得到,再利用放縮法和取整函數的定義,即可求解.【詳解】由題意,函數,且,,可得,,又由,可得為常數列,且,數列表示首項為4,公差為2的等差數列,所以,其中數列滿足,所以,所以,又由,可得數列的前n項和為,數列的前n項和為,所以數列的前項和為,滿足,所以,即,又由表示不超過實數的最大整數,所以.故答案為:4.【點睛】本題主要考查了函數的導數的計算,以及等差數列的通項公式,累加法求解數列的通項公式,以及裂項法求數列的和的綜合應用,著重考查了分析問題和解答問題的能力,屬于中檔試題.15、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點:1.三視圖;2.空間幾何體的表面積與體積.16、0.380.9【解析】

考慮恰有一件的三種情況直接計算得到概率,隨機變量的可能取值為,計算得到概率,再計算數學期望得到答案.【詳解】第一次燒制后恰有一件產品合格的概率為:.甲、乙、丙三件產品合格的概率分別為:,,.故隨機變量的可能取值為,故;;;.故.故答案為:0.38;0.9.【點睛】本題考查了概率的計算,數學期望,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)單調遞減區(qū)間為,單調遞增區(qū)間為;(Ⅱ).【解析】

(Ⅰ)求出函數的定義域以及導數,利用導數可求出該函數的單調遞增區(qū)間和單調遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時,構造函數,利用導數證明出在上恒成立;在時,經過分析得出,然后構造函數,利用導數證明出在上恒成立,由此得出,進而可得出實數的最大值.【詳解】(Ⅰ)函數的定義域為.當時,.令,解得(舍去),.當時,,所以,函數在上單調遞減;當時,,所以,函數在上單調遞增.因此,函數的單調遞減區(qū)間為,單調遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構造函數,,則,,,.又,在上恒成立.所以,函數在上單調遞增,當時,在上恒成立.(ii)若,構造函數,.,所以,函數在上單調遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當,即時,函數在上單調遞減,,不合題意,,即.此時構造函數,.,,,,恒成立,所以,函數在上單調遞增,恒成立.綜上,實數的最大值為【點睛】本題考查利用導數求解函數的單調區(qū)間,同時也考查了利用導數研究函數不等式恒成立問題,本題的難點在于不斷構造新函數來求解,考查推理能力與運算求解能力,屬于難題.18、(1)見解析;(2)【解析】

(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數作出的圖象即可.【詳解】(1)令,則,當時,,故在上單調遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當時,,當時,,當時,,故在單調遞減,在,上單調遞增,作出的圖象,易得.故實數的取值范圍為.【點睛】本題考查利用導數證明不等式以及研究函數零點個數問題,考查學生數形結合的思想,是一道中檔題.19、(1):,直線:;(2).【解析】

(1)由消參法把參數方程化為普通方程,再由公式進行直角坐標方程與極坐標方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標方程,求出極徑,把比值化為的三角函數,從而可得最大值、【詳解】(1)消去參數可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標方程是;由,化為直角坐標方程為.(2)設,則,,,當時,取得最大值為.【點睛】本題考查參數方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,掌握公式可輕松自如進行極坐標方程與直角坐標方程的互化.20、(1)見解析(2)【解析】

(1)根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論