


版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023學年高考數(shù)學模擬測試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在滿足,的實數(shù)對中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.92.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.3.若復數(shù),則()A. B. C. D.204.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形5.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.6.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則7.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,4,8,14,23,36,54,則該數(shù)列的第19項為()(注:)A.1624 B.1024 C.1198 D.15608.若,則下列不等式不能成立的是()A. B. C. D.9.做拋擲一枚骰子的試驗,當出現(xiàn)1點或2點時,就說這次試驗成功,假設骰子是質(zhì)地均勻的.則在3次這樣的試驗中成功次數(shù)X的期望為()A.13 B.110.若復數(shù)滿足,則()A. B. C. D.11.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°12.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正實數(shù)滿足,則的最小值為.14.在矩形中,,為的中點,將和分別沿,翻折,使點與重合于點.若,則三棱錐的外接球的表面積為_____.15.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.16.戊戌年結(jié)束,己亥年伊始,小康,小梁,小譚,小楊,小劉,小林六人分成四組,其中兩個組各2人,另兩個組各1人,分別奔赴四所不同的學校參加演講,則不同的分配方案有_________種(用數(shù)字作答),三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線的焦點,點在軸上,為坐標原點,且滿足,經(jīng)過點且垂直于軸的直線與拋物線交于、兩點,且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.18.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.19.(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.20.(12分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.21.(12分)每年的寒冷天氣都會帶熱“御寒經(jīng)濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網(wǎng)上預約出租車出行,出租車公司的訂單數(shù)就會增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網(wǎng)上預約出租車訂單數(shù)(單位:份);日平均氣溫(℃)642網(wǎng)上預約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預測日平均氣溫為時,該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數(shù)據(jù)當成真實的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:22.(10分)近年來,隨著“霧霾”天出現(xiàn)的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項對人們霧霾天外出時是否戴口罩的調(diào)查中,共調(diào)查了人,其中女性人,男性人,并根據(jù)統(tǒng)計數(shù)據(jù)畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關(guān)系并說明理由;(2)根據(jù)統(tǒng)計數(shù)據(jù)建立一個列聯(lián)表;(3)能否在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩的關(guān)系.附:
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】
由題可知:,且可得,構(gòu)造函數(shù)求導,通過導函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【題目詳解】因為,則,即整理得,令,設,則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因為,,由題可知:時,則,所以,所以,當無限接近時,滿足條件,所以,所以要使得故當時,可有,故,即,所以:最大值為5.故選:A.【答案點睛】本題主要考查利用導數(shù)求函數(shù)單調(diào)性、極值和最值,以及運用構(gòu)造函數(shù)法和放縮法,同時考查轉(zhuǎn)化思想和解題能力.2、B【答案解析】
由題可知,,再結(jié)合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【題目詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【答案點睛】本題考查雙曲線的離心率求法,幾何性質(zhì)的應用,屬于中檔題3、B【答案解析】
化簡得到,再計算模長得到答案.【題目詳解】,故.故選:.【答案點睛】本題考查了復數(shù)的運算,復數(shù)的模,意在考查學生的計算能力.4、B【答案解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【題目詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【答案點睛】本題主要考查了對數(shù)的運算性質(zhì)的應用,兩角差的正弦公式的應用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎題.5、B【答案解析】
根據(jù)在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉(zhuǎn)化為模長和夾角運算,代入即可求得.【題目詳解】在上投影為,即又本題正確選項:【答案點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結(jié)果;解題關(guān)鍵是需要通過夾角取值范圍的分析,得到的最小值.6、B【答案解析】
根據(jù)空間中線線、線面位置關(guān)系,逐項判斷即可得出結(jié)果.【題目詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【答案點睛】本題主要考查與線面、線線相關(guān)的命題,熟記線線、線面位置關(guān)系,即可求解,屬于??碱}型.7、B【答案解析】
根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項公式和前項和,利用累加法求得數(shù)列的通項公式,進而求得.【題目詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設該數(shù)列為,令,設的前項和為,又令,設的前項和為.易,,進而得,所以,則,所以,所以.故選:B【答案點睛】本小題主要考查新定義數(shù)列的理解和運用,考查累加法求數(shù)列的通項公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.8、B【答案解析】
根據(jù)不等式的性質(zhì)對選項逐一判斷即可.【題目詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【答案點睛】本題考查不等關(guān)系和不等式,屬于基礎題.9、C【答案解析】
每一次成功的概率為p=26=【題目詳解】每一次成功的概率為p=26=13故選:C.【答案點睛】本題考查了二項分布求數(shù)學期望,意在考查學生的計算能力和應用能力.10、C【答案解析】
化簡得到,,再計算復數(shù)模得到答案.【題目詳解】,故,故,.故選:.【答案點睛】本題考查了復數(shù)的化簡,共軛復數(shù),復數(shù)模,意在考查學生的計算能力.11、C【答案解析】
如圖所示:作垂直于準線交準線于,則,故,得到答案.【題目詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【答案點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉(zhuǎn)化能力.12、D【答案解析】
由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【題目詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【答案點睛】本題考查幾何概型的面積公式的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、4【答案解析】
由題意結(jié)合代數(shù)式的特點和均值不等式的結(jié)論整理計算即可求得最終結(jié)果.【題目詳解】.當且僅當時等號成立.據(jù)此可知:的最小值為4.【答案點睛】條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值.14、.【答案解析】
計算外接圓的半徑,并假設外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【題目詳解】由題意可知,,所以可得面,設外接圓的半徑為,由正弦定理可得,即,,設三棱錐外接球的半徑,因為外接球的球心為過底面圓心垂直于底面的直線與中截面的交點,則,所以外接球的表面積為.故答案為:.【答案點睛】本題考查三棱錐的外接球的應用,屬于中檔題.15、【答案解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離.【題目詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于.故答案為:.【答案點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關(guān)系的應用,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,屬于中檔題.16、1080【答案解析】
按照先分組,再分配的分式,先將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,然后用分步計數(shù)原理求解.【題目詳解】將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,則不同的分配方案有種.故答案為:1080【答案點睛】本題主要考查分組分配問題,還考查了理解辨析的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【答案解析】
(1)求得點的坐標,可得出直線的方程,與拋物線的方程聯(lián)立,結(jié)合求出正實數(shù)的值,進而可得出拋物線的方程;(2)設點,,設的方程為,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結(jié)合求得的值,可得出直線所過定點的坐標,由此可得出點到直線的最大距離.【題目詳解】(1)易知點,又,所以點,則直線的方程為.聯(lián)立,解得或,所以.故拋物線的方程為;(2)設的方程為,聯(lián)立有,設點,,則,所以.所以,解得.所以直線的方程為,恒過點.又點,故當直線與軸垂直時,點到直線的最大距離為.【答案點睛】本題考查拋物線方程的求解,同時也考查了拋物線中最值問題的求解,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.18、(1);(2)【答案解析】
(1)根據(jù)遞推公式,用配湊法構(gòu)造等比數(shù)列,求其通項公式,進而求出的通項公式;(2)求出數(shù)列的通項公式,利用錯位相減法求數(shù)列的前項和.【題目詳解】解:(1),,是首項為,公比為的等比數(shù)列.所以,.(2).【答案點睛】本題考查了由數(shù)列的遞推公式求通項公式,錯位相減法求數(shù)列的前n項和的問題,屬于中檔題.19、(1);(2)【答案解析】
(1)利用零點分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【題目詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(當且僅當時取“=”).所以的最小值為.【答案點睛】本題考查絕對值不等式的解法以及利用柯西不等式求最值.解絕對值不等式的基本方法有零點分段討論法、圖象法、平方法等,利用零點分段討論法時注意分類點的合理選擇,利用平方去掉絕對值符號時注意代數(shù)式的正負,而利用圖象法求解時注意圖象的正確刻畫.利用柯西不等式求最值時注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.20、(1)(2)【答案解析】
(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【題目詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【答案點睛】本題考查正弦定理以及余弦定理的應用,三角形的面積公式,也考查計算能力,屬于基礎題.21、(1),232;(2)【答案解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司新產(chǎn)品下線節(jié)目策劃方案
- 公司效能提升年活動方案
- 公司氣球派對活動方案
- 公司新年開工活動方案
- 公司生日福利活動方案
- 公司組織避暑活動方案
- 公司搬新辦公室活動方案
- 公司節(jié)目展示策劃方案
- 公司活動燒烤策劃方案
- 公司盈利模式策劃方案
- 硐室爆破資料課件
- 防性侵防溺水防校園欺凌主題班會課件
- 《水熱溶劑熱合成》課件
- 建筑安全玻璃管理規(guī)定
- 保險學(第五版)習題庫答案
- 《重大火災隱患判定方法》GB 35181-2017
- 奇瑞汽車售后服務藍圖
- 《農(nóng)藥經(jīng)營許可培訓班》考試試卷
- 安徽省技能人才評價考評員考試題庫
- 網(wǎng)絡域名及域名解析PPT課件
- 浙江省2016年10月物理學業(yè)水平考試試題
評論
0/150
提交評論