![2022年黑龍江省黑河市遜克縣第一中學(xué)高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁](http://file4.renrendoc.com/view/21d9ae2f97e77fd0236cfabeba73f3ab/21d9ae2f97e77fd0236cfabeba73f3ab1.gif)
![2022年黑龍江省黑河市遜克縣第一中學(xué)高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁](http://file4.renrendoc.com/view/21d9ae2f97e77fd0236cfabeba73f3ab/21d9ae2f97e77fd0236cfabeba73f3ab2.gif)
![2022年黑龍江省黑河市遜克縣第一中學(xué)高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁](http://file4.renrendoc.com/view/21d9ae2f97e77fd0236cfabeba73f3ab/21d9ae2f97e77fd0236cfabeba73f3ab3.gif)
![2022年黑龍江省黑河市遜克縣第一中學(xué)高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁](http://file4.renrendoc.com/view/21d9ae2f97e77fd0236cfabeba73f3ab/21d9ae2f97e77fd0236cfabeba73f3ab4.gif)
![2022年黑龍江省黑河市遜克縣第一中學(xué)高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁](http://file4.renrendoc.com/view/21d9ae2f97e77fd0236cfabeba73f3ab/21d9ae2f97e77fd0236cfabeba73f3ab5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種2.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.3.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.5.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.326.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.7.已知集合,,則()A. B.C. D.8.用數(shù)學(xué)歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+19.設(shè)集合,集合,則=()A. B. C. D.R10.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形11.已知函數(shù).若存在實數(shù),且,使得,則實數(shù)a的取值范圍為()A. B. C. D.12.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.14.已知,滿足約束條件則的最大值為__________.15.已知等比數(shù)列滿足,,則該數(shù)列的前5項的和為______________.16.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓經(jīng)過點,且離心率,過右焦點且不與坐標(biāo)軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.18.(12分)在平面直角坐標(biāo)系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當(dāng)直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.19.(12分)為了解甲、乙兩個快遞公司的工作狀況,假設(shè)同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機抽取10天的數(shù)據(jù),整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務(wù)費情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個數(shù)的平均數(shù)和眾數(shù);(2)為了解乙公司員工每天所得勞務(wù)費的情況,從這10天中隨機抽取1天,他所得的勞務(wù)費記為(單位:元),求的分布列和數(shù)學(xué)期望;(3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務(wù)費.20.(12分)已知函數(shù)有兩個極值點,.(1)求實數(shù)的取值范圍;(2)證明:.21.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當(dāng)時,求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,求證:函數(shù)有且僅有一個零點.22.(10分)已知點P在拋物線上,且點P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準(zhǔn)線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.2、D【解析】
如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點睛】本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計算能力.3、D【解析】
根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.4、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點,考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.5、B【解析】
根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復(fù)的第5個編號為21.故選:B【點睛】本小題主要考查隨機數(shù)表法進行抽樣,屬于基礎(chǔ)題.6、A【解析】
畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線,當(dāng)直線過點A時,此時直線在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.【點睛】本題主要考查簡單線性規(guī)劃求解目標(biāo)函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.7、C【解析】
求出集合,計算出和,即可得出結(jié)論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎(chǔ)題.8、C【解析】
首先分析題目求用數(shù)學(xué)歸納法證明1+1+3+…+n1=n4【詳解】當(dāng)n=k時,等式左端=1+1+…+k1,當(dāng)n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點睛】本題主要考查數(shù)學(xué)歸納法,屬于中檔題./9、D【解析】試題分析:由題,,,選D考點:集合的運算10、B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數(shù)的運算性質(zhì)的應(yīng)用,兩角差的正弦公式的應(yīng)用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題.11、D【解析】
首先對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問題,涉及到的知識點有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫出圖象數(shù)形結(jié)合,屬于較難題目.12、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關(guān)于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關(guān)于原點對稱,∴的圖象關(guān)于點成中心對稱.可排除A、D項.當(dāng)時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質(zhì)與識圖能力,一般根據(jù)四個選擇項來判斷對應(yīng)的函數(shù)性質(zhì),即可排除三個不符的選項,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準(zhǔn)線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準(zhǔn)線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.14、1【解析】
先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點,代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.15、31【解析】設(shè),可化為,得,,,16、【解析】
由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【點睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對角互補.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)詳見解析.【解析】
(1)由橢圓離心率、系數(shù)關(guān)系和已知點坐標(biāo)構(gòu)建方程組,求得,代入標(biāo)準(zhǔn)方程中即可;(2)依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),,通過聯(lián)立直線方程與橢圓方程化簡整理和中點的坐標(biāo)表示用含k的表達式表示,,進而表示;由韋達定理表示根與系數(shù)的關(guān)系進而表示用含k的表達式表示,最后做比即得證.【詳解】(1)設(shè)橢圓的焦距為,則,即,所以.依題意,,即,解得,所以,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明:依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),.與橢圓聯(lián)立整理得,故所以,,所以.又,所以為定值,得證.【點睛】本題考查由離心率求橢圓的標(biāo)準(zhǔn)方程,還考查了橢圓中的定值問題,屬于較難題.18、(1);(2)①證明見解析;②【解析】
(1)由題意焦距為2,設(shè)點,代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標(biāo)準(zhǔn)方程.(2)①由題意,聯(lián)立直線與橢圓的方程,得,推導(dǎo)出,,,,由此猜想:直線過定點,從而能證明,,三點共線,直線過定點.②由題意設(shè),,,,直線,代入橢圓標(biāo)準(zhǔn)方程:,得,推導(dǎo)出,,由此推導(dǎo)出(定值).【詳解】(1)由題意焦距為2,可設(shè)點,代入橢圓,得,解得,四邊形的面積,,,橢圓的標(biāo)準(zhǔn)方程為.(2)①由題意,聯(lián)立直線與橢圓的方程,得,,解得,從而,,,同理可得,,猜想:直線過定點,下證之:,,,,三點共線,直線過定點.②為定值,理由如下:由題意設(shè),,,,直線,代入橢圓標(biāo)準(zhǔn)方程:,得,,,,(定值).【點睛】本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線過定點的證明,考查兩直線的斜率的比值是否為定值的判斷與求法,考查橢圓、直線方程、韋達定理等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題.19、(1)平均數(shù)為360,眾數(shù)為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)【解析】
(1)將圖中甲公司員工A的所有數(shù)據(jù)相加,再除以總的天數(shù)10,即可求出甲公司員工A投遞快遞件數(shù)的平均數(shù).從中發(fā)現(xiàn)330出現(xiàn)的次數(shù)最多,故為眾數(shù);(2)由題意能求出的可能取值為340,360,370,420,440,分別求出相對應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望;(3)利用(1)(2)的結(jié)果,可估算兩公司的每位員工在該月所得的勞務(wù)費.【詳解】解:(1)由題意知甲公司員工在這10天投遞的快遞件數(shù)的平均數(shù)為.眾數(shù)為330.(2)設(shè)乙公司員工1天的投遞件數(shù)為隨機變量,則當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,的分布列為204219228273291(元);(3)由(1)估計甲公司被抽取員工在該月所得的勞務(wù)費為(元)由(2)估計乙公司被抽取員工在該月所得的勞務(wù)費為(元).【點睛】本題考查頻率分布表的應(yīng)用,考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題.20、(1)(2)證明見解析【解析】
(1)先求得導(dǎo)函數(shù),根據(jù)兩個極值點可知有兩個不等實根,構(gòu)造函數(shù),求得;討論和兩種情況,即可確定零點的情況,即可由零點的情況確定的取值范圍;(2)根據(jù)極值點定義可知,,代入不等式化簡變形后可知只需證明;構(gòu)造函數(shù),并求得,進而判斷的單調(diào)區(qū)間,由題意可知,并設(shè),構(gòu)造函數(shù),并求得,即可判斷在內(nèi)的單調(diào)性和最值,進而可得,即可由函數(shù)性質(zhì)得,進而由單調(diào)性證明,即證明,從而證明原不等式成立.【詳解】(1)函數(shù)則,因為存在兩個極值點,,所以有兩個不等實根.設(shè),所以.①當(dāng)時,,所以在上單調(diào)遞增,至多有一個零點,不符合題意.②當(dāng)時,令得,0減極小值增所以,即.又因為,,所以在區(qū)間和上各有一個零點,符合題意,綜上,實數(shù)的取值范圍為.(2)證明:由題意知,,所以,.要證明,只需證明,只需證明.因為,,所以.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 丁二烯法合成氯丁橡膠生產(chǎn)裝置項目可行性研究報告模板-備案拿地
- 2024-2025學(xué)年河北省尚義縣第一中學(xué)等校高二上學(xué)期12月月考歷史試卷
- 2025年債務(wù)轉(zhuǎn)股權(quán)協(xié)議標(biāo)準(zhǔn)格式
- 2025年古園林保護性維護協(xié)議
- 2025年農(nóng)產(chǎn)品交易市場租賃合同模板
- 2025年功能性棚模新材料及各種助劑項目提案報告
- 2025年企業(yè)與個人租車合同模板及規(guī)定
- 2025年長租公寓項目立項申請報告范文
- 2025年家居用品商貿(mào)公司采購協(xié)議書
- 2025年綠色共享汽車合作投資與發(fā)展策劃協(xié)議
- 商業(yè)銀行的風(fēng)險審計與內(nèi)部控制
- 2024項目管理人員安全培訓(xùn)考試題及參考答案AB卷
- 2025年與商場合作協(xié)議樣本(5篇)
- 2024年12月青少年機器人技術(shù)等級考試理論綜合試卷(真題及答案)
- 網(wǎng)絡(luò)與社交媒體管理制度
- 2025年春新外研版(三起)英語三年級下冊課件 Unit1第1課時Startup
- 2025廣東珠海高新區(qū)科技產(chǎn)業(yè)局招聘專員1人歷年高頻重點提升(共500題)附帶答案詳解
- 數(shù)學(xué)-福建省泉州市2024-2025學(xué)年高三上學(xué)期質(zhì)量監(jiān)測(二)試卷和答案(泉州二模)
- 潤滑油、潤滑脂培訓(xùn)課件
- 寒假綜合實踐活動作業(yè)展示
- 課題申報書:銀齡教師支援西部行動成效評價與優(yōu)化路徑研究
評論
0/150
提交評論