版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數(shù)學模擬測試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內(nèi)雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.2332.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.函數(shù)(),當時,的值域為,則的范圍為()A. B. C. D.4.已知集合,定義集合,則等于()A. B.C. D.5.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.6.已知當,,時,,則以下判斷正確的是A. B.C. D.與的大小關系不確定7.設,,分別是中,,所對邊的邊長,則直線與的位置關系是()A.平行 B.重合C.垂直 D.相交但不垂直8.已知復數(shù),,則()A. B. C. D.9.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.210.已知集合,,若,則()A.或 B.或 C.或 D.或11.已知函數(shù)在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、12.已知三棱錐且平面,其外接球體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線(,)過圓:的圓心,則的最小值是______.14.數(shù)列的前項和為,數(shù)列的前項和為,滿足,,且.若任意,成立,則實數(shù)的取值范圍為__________.15.已知為正實數(shù),且,則的最小值為____________.16.3張獎券分別標有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.18.(12分)已知不等式對于任意的恒成立.(1)求實數(shù)m的取值范圍;(2)若m的最大值為M,且正實數(shù)a,b,c滿足.求證.19.(12分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據(jù)進行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細菌的繁殖數(shù)量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結果及表格數(shù)據(jù),建立關于的回歸方程(結果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數(shù)量的預報值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,,參考數(shù)據(jù):.20.(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于點,.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.21.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.22.(10分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】
計算得到Ac,bca【題目詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【答案點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.2、D【答案解析】
根據(jù)面面平行的判定及性質求解即可.【題目詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【答案點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.3、B【答案解析】
首先由,可得的范圍,結合函數(shù)的值域和正弦函數(shù)的圖像,可求的關于實數(shù)的不等式,解不等式即可求得范圍.【題目詳解】因為,所以,若值域為,所以只需,∴.故選:B【答案點睛】本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調性和特殊角的三角函數(shù)值是解題的關鍵,側重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).4、C【答案解析】
根據(jù)定義,求出,即可求出結論.【題目詳解】因為集合,所以,則,所以.故選:C.【答案點睛】本題考查集合的新定義運算,理解新定義是解題的關鍵,屬于基礎題.5、A【答案解析】
先求出,由正弦定理求得,然后由面積公式計算.【題目詳解】由題意,.由得,.故選:A.【答案點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關系,兩角和的正弦公式與誘導公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.6、C【答案解析】
由函數(shù)的增減性及導數(shù)的應用得:設,求得可得為增函數(shù),又,,時,根據(jù)條件得,即可得結果.【題目詳解】解:設,則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【答案點睛】本題考查了函數(shù)的增減性及導數(shù)的應用,屬中檔題.7、C【答案解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關系8、B【答案解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數(shù)問題是高考數(shù)學中的??紗栴},屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問題.9、D【答案解析】
分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質求解即可.【題目詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【答案點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.10、B【答案解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.11、A【答案解析】
設,利用導數(shù)和題設條件,得到,得出函數(shù)在R上單調遞增,得到,進而變形即可求解.【題目詳解】由題意,設,則,又由,所以,即函數(shù)在R上單調遞增,則,即,變形可得.故選:A.【答案點睛】本題主要考查了利用導數(shù)研究函數(shù)的單調性及其應用,以及利用單調性比較大小,其中解答中根據(jù)題意合理構造新函數(shù),利用新函數(shù)的單調性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.12、A【答案解析】
由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【題目詳解】由題,因為,所以,設,則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設外接球的半徑為,則,所以,所以外接球的體積.故選:A【答案點睛】本題考查三棱錐的外接球體積,考查空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13、;【答案解析】
求出圓心坐標,代入直線方程得的關系,再由基本不等式求得題中最小值.【題目詳解】圓:的標準方程為,圓心為,由題意,即,∴,當且僅當,即時等號成立,故答案為:.【答案點睛】本題考查用基本不等式求最值,考查圓的標準方程,解題方法是配方法求圓心坐標,“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.14、【答案解析】
當時,,可得到,再用累乘法求出,再求出,根據(jù)定義求出,再借助單調性求解.【題目詳解】解:當時,,則,,當時,,,,,,(當且僅當時等號成立),,故答案為:.【答案點睛】本題主要考查已知求,累乘法,主要考查計算能力,屬于中檔題.15、【答案解析】
,所以有,再利用基本不等式求最值即可.【題目詳解】由已知,,所以,當且僅當,即時,等號成立.故答案為:【答案點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.16、【答案解析】
利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【題目詳解】解:3張獎券分別標有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:【答案點睛】本題主要考查古典概型的概率公式的應用,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、特征值為1,特征向量為.【答案解析】
設出矩陣M結合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【題目詳解】設矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個特征向量為.【答案點睛】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關鍵是明確其運算規(guī)則,側重考查數(shù)學運算的核心素養(yǎng).18、(1)(2)證明見解析【答案解析】
(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數(shù),且時為增函數(shù),由此可得出答案;(2)由(1)知,,即,結合“1”的代換,利用基本不等式即可證明結論.【題目詳解】解:(1)法一:(當且僅當時取等號),又(當且僅當時取等號),所以(當且僅當時取等號),由題意得,則,解得,故的取值范圍是;法二:因為對于任意恒有成立,即,令,易知是偶函數(shù),且時為增函數(shù),所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【答案點睛】本題主要考查絕對值不等式的恒成立問題,考查基本不等式的應用,屬于中檔題.19、(1)作圖見解析;更適合(2)(3)預報值為245【答案解析】
(1)由散點圖即可得到答案;(2)把兩邊取自然對數(shù),得,由計算得到,再將代入可得,最終求得,即;(3)將代入中計算即可.【題目詳解】解:(1)繪出關于的散點圖,如圖所示:由散點圖可知,更適合作為該種細菌的繁殖數(shù)量關于的回歸方程類型;(2)把兩邊取自然對數(shù),得,即,由.∴,則關于的回歸方程為;(3)當時,計算可得;即溫度為27℃時,該種細菌的繁殖數(shù)量的預報值為245.【答案點睛】本題考查求非線性回歸方程及其應用的問題,考查學生數(shù)據(jù)處理能力及運算能力,是一道中檔題.20、(Ⅰ);(Ⅱ),證明見解析.【答案解析】
(Ⅰ)根據(jù)題意列出關于,,的方程組,解出,,的值,即可得到橢圓的方程;(Ⅱ)設點,,點,,易求直線的方程為:,令得,,同理可得,所以,聯(lián)立直線與橢圓方程,利用韋達定理代入上式,化簡即可得到.【題目詳解】(Ⅰ)解:由題意可知:,解得,橢圓的方程為:;(Ⅱ)證:設點,,點,,聯(lián)立方程,消去得:,,①,點,,,直線的方程為:,令得,,,,同理可得,,,把①式代入上式得:,為定值.【答案點睛】本題主要考查直線與橢圓的位置關系、定值問題的求解;關鍵是能夠通過直線與橢圓聯(lián)立得到韋達定理的形式,利用韋達定理化簡三角形面積得到定值;考查計算能力與推理能力,屬于中檔題.21、(1),(2)最大值,最小值【答案解析】
(1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標方程,展開有,再根據(jù)求解.(2)因為曲線C是一個半圓,利用數(shù)形結合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【題目詳解】(1)因為曲線的參數(shù)方程為所以兩式平方相加得:因為直線的極坐標方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【答案點睛】本題主要考查參數(shù)方程,普通方程及極坐標方程的轉化和直線與圓的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.22、證明見解析;1.【答案解析】
由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討論當?shù)男甭蕿闀r和斜率不為時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度股份代持與代管合同協(xié)議2篇
- 二零二五年度水利工程監(jiān)測與施工測量服務合同范本3篇
- 二零二五版新能源設備搬運安裝合同細則3篇
- 2025年度航空航天器發(fā)動機安裝與測試合同3篇
- 二零二五年度綠色交通設施招標投標合同6篇
- 展會參展資格合同(2篇)
- 二零二五版水利工程鋼筋加工與分包合同規(guī)范范本3篇
- 二零二五版室內(nèi)外景觀裝飾一體化合同3篇
- 2025年度文化演出活動承辦合同3篇
- 二零二五版單位職工食堂員工健康體檢承包合同2篇
- 中建集團面試自我介紹
- 《工業(yè)園區(qū)節(jié)水管理規(guī)范》
- 警校生職業(yè)生涯規(guī)劃
- 意識障礙患者的護理診斷及措施
- 2024版《53天天練單元歸類復習》3年級語文下冊(統(tǒng)編RJ)附參考答案
- 2025企業(yè)年會盛典
- 215kWh工商業(yè)液冷儲能電池一體柜用戶手冊
- 場地平整施工組織設計-(3)模板
- 交通設施設備供貨及技術支持方案
- 美容美發(fā)店火災應急預案
- 餐車移動食材配送方案
評論
0/150
提交評論