版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第5章軸對稱與旋轉(zhuǎn)5.1軸對稱5.1.1軸對稱圖形第5章軸對稱與旋轉(zhuǎn)5.1.1軸對稱圖形生活中的軸對稱生活中的軸對稱生活中的軸對稱生活中的軸對稱生活中的軸對稱生活中的軸對稱通過觀察你發(fā)現(xiàn)了這些圖形有什么特點?若將圖中的每個圖形沿虛線對折,虛線兩側(cè)的部分可以完全重合.通過觀察你發(fā)現(xiàn)了這些圖形有什么特點?若將圖中如果一個圖形沿著一條直線折疊,直線兩側(cè)的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做它的對稱軸.你還能舉出生活中有那些軸對稱圖形?軸對稱圖形:如果一個圖形沿著一條直線折疊,直線兩側(cè)的部分能夠思考:下列圖形哪些是軸對稱圖形?(1)(2)(3)(6)(5)(4)思考:下列圖形哪些是軸對稱圖形?(1)(2)(3)(6)(思考:下列圖形有幾條對稱軸等腰三角形等邊三角形長方形正方形圓思考:下列圖形有幾條對稱軸等腰三角形等邊三角形長方形正方形圖中(1)、(2)、(3)、(4)都是軸對稱圖形圖中(5)、(6)不是軸對稱圖形圖中(1)、(2)、圖中(5等腰三角形有1條對稱軸,等邊三角形有3條對稱軸,長方形有兩條對稱軸.正方形有4條對稱軸,圓有無數(shù)條對稱軸.等腰三角形有1條對稱軸,正方形有4條對稱軸,1.指出下列各圖形的對稱軸.1.指出下列各圖形的對稱軸.例:畫三角形ABC關(guān)于直線m的對稱圖形如何畫線段的垂直平分線?線段的垂直平分線有什么特點?ABCm例:畫三角形ABC關(guān)于直線m的對稱圖形如何畫線段的垂5.1.2軸對稱變換5.1.2軸對稱變換
如圖,用印章在一張紙上蓋上一個印(a),趁印跡未干之時,將紙張沿著直線對折,得到印(b),隨后打開,觀察圖形(a)與(b)有怎樣的關(guān)系.(a)(b)如圖,用印章在一張紙上蓋上一個印(a),趁印跡未干之
把圖形(a)沿著直線l翻折并將圖形“復(fù)印”下來得到圖形(b),就叫做該圖形關(guān)于直線l作了軸對稱變換,也叫軸反射.圖形(a)叫做原像,圖形(b)叫做圖形(a)在這個軸反射下的像.
(a)(b)把圖形(a)沿著直線l翻折并將圖形“復(fù)印”下來得到圖
如果一個圖形關(guān)于某一條直線做軸對稱變換后,能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,也稱這兩個圖形成軸對稱..這條直線叫做對稱軸.原像與像中能互相重合的兩個點,其中一點叫做另一個點關(guān)于這條直線的對應(yīng)點.
圖5-4(a)(b)如果一個圖形關(guān)于某一條直線做軸對稱變換后,能夠與另一
圖中,對稱軸l兩邊的圖形(a)與(b)的形狀和大小發(fā)生變化了嗎?(a)(b)圖中,對稱軸l兩邊的圖形(a)與(b)的形狀和大小發(fā)
軸對稱變換不改變圖形的形狀與大小.軸對稱變換具有下述性質(zhì):
圖形經(jīng)過軸對稱變換,長度、角度和面積等都不改變.軸對稱變換不改變圖形的形狀與大小.軸對稱變換具有下述性質(zhì)
把成軸對稱的兩個圖形看成一個整體,它就是一個軸對稱圖形;
把一個軸對稱圖形沿對稱軸分成兩個圖形,這兩個圖形關(guān)于這條直線軸對稱.
軸對稱與軸對稱圖形兩者之間的聯(lián)系?把成軸對稱的兩個圖形看成一個整體,它就是一個軸對稱圖
在下圖中,三角形
ABC和三角形A'B'C'關(guān)于直線
l成軸對稱,點P和P'是對應(yīng)點,線段PP'交直線l于點D.那么線段PP'與對稱軸l有什么關(guān)系呢?在下圖中,三角形ABC和三角形A'B'C'關(guān)于直因為三角形ABC和三角形A'B'C'關(guān)于直線l成軸對稱,將下圖沿直線l折疊,則點P與P'重合,所以PD與P'D
,∠1與∠2也互相重合,故有PD=P'D,∠1=∠2=90o,因此,l⊥PP',且平分PP',即直線
l垂直平分線段PP'.因為三角形ABC和三角形A'B'C'關(guān)于直線l成成軸對稱的兩個圖形中,對應(yīng)點的連線被對稱軸垂直平分.軸對稱具有下述性質(zhì):
成軸對稱的兩個圖形中,對應(yīng)點的連線被對稱軸垂直平分.從下圖可以看出,如果兩個圖形的對應(yīng)點的連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱.從下圖可以看出,如果兩個圖形的對應(yīng)點的連線被同一條直如何做一個圖形關(guān)于一條直線的對稱圖形?如何做一個圖形關(guān)于一條直線的對稱圖形?
1.如圖,已知直線
l及直線外一點P,求作點P',使它與點P關(guān)于直線l對稱.作法:
1.
過點P作PQ⊥l,交l于點O..POP'lQ2.
在直線
PQ上,截取OP'=OP.則點P'即為所求作的點.1.如圖,已知直線l及直線外一點P,求作點P',使如圖,已知線段AB和直線l,作出與線段AB關(guān)于直線l對稱的圖形.ABl做一做如圖,已知線段AB和直線l,作出與線段AB關(guān)于直線l
2.如圖,已知三角形ABC和直線l,作出與三角形ABC關(guān)于直線l對稱的圖形.分析:要作三角形ABC關(guān)于直線l的對稱圖形,只要作出三角形的頂點A,B,C關(guān)于直線l的對應(yīng)點A',B',C',連接這些對應(yīng)點,得到的三角形A'B'C'就是三角形ABC關(guān)于直線l對稱的圖形.BlAC2.如圖,已知三角形ABC和直線l,作出與三角形A圖5-8作法:1.
過點A作直線l的垂線,垂足為點O,在垂線上截取OA'=OA,點A'就是點A關(guān)于直線l的對應(yīng)點.畫好三角形A'B'C'后,若將紙沿直線l對折,兩個三角形會重合嗎?lACA'B'C'O2.
類似地,分別作出點B,C關(guān)于直線l的對應(yīng)點B',C'.3.
連接A'B',B'C',C'A'得到的三角形A'B'C'即為所求.圖5-8作法:畫好三角形A'B'C'后,若將紙沿直線l對折如圖所示,將矩形紙片先沿虛線AB按箭頭方向向右對折,接著對折后的紙片沿虛線CD向下對折,然后剪下一個小三角形,再將紙片打開,則打開后的展開圖()
解析根據(jù)軸對稱變換的性質(zhì),經(jīng)過兩次變換應(yīng)選D.D如圖所示,將矩形紙片先沿虛線AB按箭頭方向向右對折,接著對什么樣的圖形變換叫軸對稱變換(軸反射)?
軸對稱變換有哪些性質(zhì)?如何做一個圖形關(guān)于一條直線對稱的圖形?說一說軸對稱與軸對稱圖形的關(guān)系.什么樣的圖形變換叫軸對稱變換(軸反射)?軸對稱變換第5章軸對稱與旋轉(zhuǎn)5.1軸對稱5.1.1軸對稱圖形第5章軸對稱與旋轉(zhuǎn)5.1.1軸對稱圖形生活中的軸對稱生活中的軸對稱生活中的軸對稱生活中的軸對稱生活中的軸對稱生活中的軸對稱通過觀察你發(fā)現(xiàn)了這些圖形有什么特點?若將圖中的每個圖形沿虛線對折,虛線兩側(cè)的部分可以完全重合.通過觀察你發(fā)現(xiàn)了這些圖形有什么特點?若將圖中如果一個圖形沿著一條直線折疊,直線兩側(cè)的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做它的對稱軸.你還能舉出生活中有那些軸對稱圖形?軸對稱圖形:如果一個圖形沿著一條直線折疊,直線兩側(cè)的部分能夠思考:下列圖形哪些是軸對稱圖形?(1)(2)(3)(6)(5)(4)思考:下列圖形哪些是軸對稱圖形?(1)(2)(3)(6)(思考:下列圖形有幾條對稱軸等腰三角形等邊三角形長方形正方形圓思考:下列圖形有幾條對稱軸等腰三角形等邊三角形長方形正方形圖中(1)、(2)、(3)、(4)都是軸對稱圖形圖中(5)、(6)不是軸對稱圖形圖中(1)、(2)、圖中(5等腰三角形有1條對稱軸,等邊三角形有3條對稱軸,長方形有兩條對稱軸.正方形有4條對稱軸,圓有無數(shù)條對稱軸.等腰三角形有1條對稱軸,正方形有4條對稱軸,1.指出下列各圖形的對稱軸.1.指出下列各圖形的對稱軸.例:畫三角形ABC關(guān)于直線m的對稱圖形如何畫線段的垂直平分線?線段的垂直平分線有什么特點?ABCm例:畫三角形ABC關(guān)于直線m的對稱圖形如何畫線段的垂5.1.2軸對稱變換5.1.2軸對稱變換
如圖,用印章在一張紙上蓋上一個印(a),趁印跡未干之時,將紙張沿著直線對折,得到印(b),隨后打開,觀察圖形(a)與(b)有怎樣的關(guān)系.(a)(b)如圖,用印章在一張紙上蓋上一個印(a),趁印跡未干之
把圖形(a)沿著直線l翻折并將圖形“復(fù)印”下來得到圖形(b),就叫做該圖形關(guān)于直線l作了軸對稱變換,也叫軸反射.圖形(a)叫做原像,圖形(b)叫做圖形(a)在這個軸反射下的像.
(a)(b)把圖形(a)沿著直線l翻折并將圖形“復(fù)印”下來得到圖
如果一個圖形關(guān)于某一條直線做軸對稱變換后,能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,也稱這兩個圖形成軸對稱..這條直線叫做對稱軸.原像與像中能互相重合的兩個點,其中一點叫做另一個點關(guān)于這條直線的對應(yīng)點.
圖5-4(a)(b)如果一個圖形關(guān)于某一條直線做軸對稱變換后,能夠與另一
圖中,對稱軸l兩邊的圖形(a)與(b)的形狀和大小發(fā)生變化了嗎?(a)(b)圖中,對稱軸l兩邊的圖形(a)與(b)的形狀和大小發(fā)
軸對稱變換不改變圖形的形狀與大小.軸對稱變換具有下述性質(zhì):
圖形經(jīng)過軸對稱變換,長度、角度和面積等都不改變.軸對稱變換不改變圖形的形狀與大小.軸對稱變換具有下述性質(zhì)
把成軸對稱的兩個圖形看成一個整體,它就是一個軸對稱圖形;
把一個軸對稱圖形沿對稱軸分成兩個圖形,這兩個圖形關(guān)于這條直線軸對稱.
軸對稱與軸對稱圖形兩者之間的聯(lián)系?把成軸對稱的兩個圖形看成一個整體,它就是一個軸對稱圖
在下圖中,三角形
ABC和三角形A'B'C'關(guān)于直線
l成軸對稱,點P和P'是對應(yīng)點,線段PP'交直線l于點D.那么線段PP'與對稱軸l有什么關(guān)系呢?在下圖中,三角形ABC和三角形A'B'C'關(guān)于直因為三角形ABC和三角形A'B'C'關(guān)于直線l成軸對稱,將下圖沿直線l折疊,則點P與P'重合,所以PD與P'D
,∠1與∠2也互相重合,故有PD=P'D,∠1=∠2=90o,因此,l⊥PP',且平分PP',即直線
l垂直平分線段PP'.因為三角形ABC和三角形A'B'C'關(guān)于直線l成成軸對稱的兩個圖形中,對應(yīng)點的連線被對稱軸垂直平分.軸對稱具有下述性質(zhì):
成軸對稱的兩個圖形中,對應(yīng)點的連線被對稱軸垂直平分.從下圖可以看出,如果兩個圖形的對應(yīng)點的連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱.從下圖可以看出,如果兩個圖形的對應(yīng)點的連線被同一條直如何做一個圖形關(guān)于一條直線的對稱圖形?如何做一個圖形關(guān)于一條直線的對稱圖形?
1.如圖,已知直線
l及直線外一點P,求作點P',使它與點P關(guān)于直線l對稱.作法:
1.
過點P作PQ⊥l,交l于點O..POP'lQ2.
在直線
PQ上,截取OP'=OP.則點P'即為所求作的點.1.如圖,已知直線l及直線外一點P,求作點P',使如圖,已知線段AB和直線l,作出與線段AB關(guān)于直線l對稱的圖形.ABl做一做如圖,已知線段AB和直線l,作出與線段AB關(guān)于直線l
2.如圖,已知三角形ABC和直線l,作出與三角形ABC關(guān)于直線l對稱的圖形.分析:要作三角形ABC關(guān)于直線l的對稱圖形,只要作出三角形的頂點A,B,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年江蘇省南京市六年級語文上學(xué)期期末考試真題重組卷(統(tǒng)編版)-A4
- 《現(xiàn)代商務(wù)談判》課件
- PLC控制技術(shù)考試模擬題(附答案)
- 養(yǎng)老院老人權(quán)益保護制度
- 《動物的權(quán)利》課件
- 2024年度影視作品拍攝模特選用合同3篇
- 教師網(wǎng)絡(luò)教學(xué)合同(2篇)
- 《藥品招商入門》課件
- 2025年肇慶大車貨運資格證考試題
- 2024年版:股權(quán)轉(zhuǎn)讓合同模板(含代理條款)
- 2024至2030年中國3C電子產(chǎn)品租賃行業(yè)市場深度研究及投資規(guī)劃建議報告
- 11G902-1 G101系列圖集常用構(gòu)造三維節(jié)點詳圖
- 【課件】紀(jì)念與象征-空間中的實體藝術(shù)+課件-高中美術(shù)人美版(2019)美術(shù)鑒賞
- JB∕T 11864-2014 長期堵轉(zhuǎn)力矩電動機式電纜卷筒
- SL352水工混凝土試驗規(guī)程
- 2024年云南中考歷史試卷試題答案解析及備考指導(dǎo)課件(深度解讀)
- “十四五”期間推進智慧水利建設(shè)實施方案
- 工程電磁場(山東聯(lián)盟)智慧樹知到期末考試答案章節(jié)答案2024年山東航空學(xué)院
- CJJ14-2016城市公共廁所設(shè)計標(biāo)準(zhǔn)
- 汽車電器DFMEA-空調(diào)冷暖裝置
- 檢驗科試劑出入庫制度
評論
0/150
提交評論