版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖像上有且僅有四個不同的關(guān)于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.2.已知定義在上函數(shù)的圖象關(guān)于原點對稱,且,若,則()A.0 B.1 C.673 D.6743.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變B.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變C.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變D.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變4.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.15.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.6.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.07.已知雙曲線的一個焦點為,點是的一條漸近線上關(guān)于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.8.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.10.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.11.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.12.已知函數(shù),則不等式的解集為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中隨機取出4個,則取出球的編號互不相同的概率為_______________.14.在平面直角坐標系中,點在單位圓上,設(shè),且.若,則的值為________________.15.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.16.設(shè)數(shù)列的前n項和為,且,若,則______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)當時,證明:;(2)設(shè)直線是函數(shù)在點處的切線,若直線也與相切,求正整數(shù)的值.18.(12分)設(shè)函數(shù).(1)當時,解不等式;(2)若的解集為,,求證:.19.(12分)已知拋物線,直線與交于,兩點,且.(1)求的值;(2)如圖,過原點的直線與拋物線交于點,與直線交于點,過點作軸的垂線交拋物線于點,證明:直線過定點.20.(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學(xué)生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責(zé)人,求從第4組抽取的學(xué)生中至少有一名是負責(zé)人的概率.組號分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0021.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的定義域為,求實數(shù)的取值范圍.22.(10分)設(shè)拋物線過點.(1)求拋物線C的方程;(2)F是拋物線C的焦點,過焦點的直線與拋物線交于A,B兩點,若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)對稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個不同的交點;利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點,通過數(shù)形結(jié)合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結(jié)果.【詳解】關(guān)于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項:【點睛】本題考查根據(jù)直線與曲線交點個數(shù)確定參數(shù)范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對稱性將問題轉(zhuǎn)化為直線與曲線交點個數(shù)的問題,通過確定直線恒過的定點,采用數(shù)形結(jié)合的方式來進行求解.2.B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.3.A【解析】
由函數(shù)的最大值求出,根據(jù)周期求出,由五點畫法中的點坐標求出,進而求出的解析式,與對比結(jié)合坐標變換關(guān)系,即可求出結(jié)論.【詳解】由圖可知,,又,,又,,,為了得到這個函數(shù)的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標變?yōu)樵瓉淼模v坐標不變)即可.故選:A【點睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關(guān)系,屬于中檔題.4.A【解析】
設(shè)點,則點,,利用向量數(shù)量積的坐標運算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設(shè)點,則點,,,,當時,取最小值,最小值為.故選:A.【點睛】本題考查拋物線背景下的向量的坐標運算,考查學(xué)生的計算能力,是基礎(chǔ)題.5.D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關(guān)系式.6.B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.7.B【解析】
由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點睛】本題考查雙曲線的簡單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計算能力,屬于中檔題.8.B【解析】
由共軛復(fù)數(shù)的定義得到,通過三角函數(shù)值的正負,以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因為,,所以在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B【點睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.9.A【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)相等的條件,意在考查學(xué)生對這些知識的理解掌握水平,是基礎(chǔ)題.10.D【解析】
直接根據(jù)幾何概型公式計算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計算能力和應(yīng)用能力.11.A【解析】
先由題和拋物線的性質(zhì)求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設(shè)點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關(guān)鍵,屬于中檔題.12.D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:從編號分別為1,1,3,4,5的5個紅球和5個黑球,從中隨機取出4個,有種不同的結(jié)果,由于是隨機取出的,所以每個結(jié)果出現(xiàn)的可能性是相等的;設(shè)事件為“取出球的編號互不相同”,則事件包含了個基本事件,所以.考點:1.計數(shù)原理;1.古典概型.14.【解析】
根據(jù)三角函數(shù)定義表示出,由同角三角函數(shù)關(guān)系式結(jié)合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點在單位圓上,設(shè),由三角函數(shù)定義可知,因為,則,所以由同角三角函數(shù)關(guān)系式可得,所以故答案為:.【點睛】本題考查了三角函數(shù)定義,同角三角函數(shù)關(guān)系式的應(yīng)用,余弦差角公式的應(yīng)用,屬于中檔題.15.【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.16.9【解析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關(guān)系求數(shù)列通項的問題,要注意n的范圍,考查學(xué)生運算求解能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】
(1)令,求導(dǎo),可知單調(diào)遞增,且,,因而在上存在零點,在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點處的切線的方程①,再設(shè)直線與相切于點,有,即,再求得在點處的切線直線的方程為②由①②可得,即,根據(jù),轉(zhuǎn)化為,,令,轉(zhuǎn)化為要使得在上存在零點,則只需,求解.【詳解】(1)證明:設(shè),則,單調(diào)遞增,且,,因而在上存在零點,且在上單調(diào)遞減,在上單調(diào)遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設(shè)直線與相切于點,注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數(shù)可知,,所以,,令,則,當時,為單調(diào)遞增函數(shù),且,從而在上無零點;當時,要使得在上存在零點,則只需,,因為為單調(diào)遞增函數(shù),,所以;因為為單調(diào)遞增函數(shù),且,因此;因為為整數(shù),且,所以.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.18.(1);(2)見解析.【解析】
(1)當時,將所求不等式變形為,然后分、、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實數(shù),可得出,將代數(shù)式變形為,將與相乘,展開后利用基本不等式可求得的最小值,進而可證得結(jié)論.【詳解】(1)當時,不等式為,且.當時,由得,解得,此時;當時,由得,該不等式不成立,此時;當時,由得,解得,此時.綜上所述,不等式的解集為;(2)由,得,即或,不等式的解集為,故,解得,,,,,當且僅當,時取等號,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式,考查推理能力與計算能力,屬于中等題.19.(1);(2)見解析【解析】
(1)聯(lián)立直線和拋物線,消去可得,求出,,再代入弦長公式計算即可.(2)由(1)可得,設(shè),計算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計算直線的斜率,求出直線的方程,化簡可得到恒過的定點.【詳解】(1)由,消去可得,設(shè),,則,.,解得或(舍去),.(2)證明:由(1)可得,設(shè),所以直線的方程為,當時,,則,代入拋物線方程,可得,,所以直線的斜率,直線的方程為,整理可得,故直線過定點.【點睛】本題第一問考查直線與拋物線相交的弦長問題,需熟記弦長公式.第二問考查直線方程和直線恒過定點問題,需有較強的計算能力,屬于難題.20.(1),,,;(2)【解析】
(1)根據(jù)第1組的頻數(shù)和頻率求出,根據(jù)頻數(shù)、頻率、的關(guān)系分別求出,進而求出不低于70分的概率;(2)由(1)得,根據(jù)分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責(zé)人的抽取方法,得出第4組抽取的學(xué)生中至少有一名是負責(zé)人的抽法數(shù),由古典概型概率公式,即可求解.【詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:/r/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版電力工程設(shè)計咨詢合同2篇
- 二零二五年度高新技術(shù)企業(yè)承包商擔(dān)保合同3篇
- 二零二五版戶外用品促銷員活動策劃合同2篇
- 二零二五年度酒店前臺正規(guī)雇傭合同范本(含勞動合同變更及續(xù)簽規(guī)則)3篇
- 二零二五版港口安全評價與安全管理合同3篇
- 二零二五版環(huán)保工程保險合同3篇
- 二零二五版外資企業(yè)往來借款稅務(wù)籌劃合同3篇
- 二零二五年財務(wù)顧問企業(yè)財務(wù)管理咨詢合同3篇
- 二零二五版智能家居產(chǎn)品銷售安裝合同2篇
- 二零二五年度鋼筋行業(yè)購銷合同規(guī)范范本5篇
- 不同茶葉的沖泡方法
- 光伏發(fā)電并網(wǎng)申辦具體流程
- 基本藥物制度政策培訓(xùn)課件
- 2025年中國華能集團限公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 建筑勞務(wù)專業(yè)分包合同范本(2025年)
- GB/T 45002-2024水泥膠砂保水率測定方法
- 廣東省廣州海珠區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試卷(含答案)
- 飛行原理(第二版) 課件 第10章 高速空氣動力學(xué)基礎(chǔ)
- 廣西《乳腺X射線數(shù)字化體層攝影診療技術(shù)操作規(guī)范》
- 山西省2024年中考道德與法治真題試卷(含答案)
- 五年(2020-2024)高考地理真題分類匯編(全國版)專題12區(qū)域發(fā)展解析版
評論
0/150
提交評論