




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象與軸交點的橫坐標(biāo)構(gòu)成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位2.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.3.1777年,法國科學(xué)家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統(tǒng)計,發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.4.己知拋物線的焦點為,準(zhǔn)線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.65.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據(jù)他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁6.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.7.已知函數(shù)是定義域為的偶函數(shù),且滿足,當(dāng)時,,則函數(shù)在區(qū)間上零點的個數(shù)為()A.9 B.10 C.18 D.208.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.9.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結(jié)果中最接近真實值的是()A. B. C. D.10.已知角的頂點與坐標(biāo)原點重合,始邊與軸的非負(fù)半軸重合,若點在角的終邊上,則()A. B. C. D.11.函數(shù),,則“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.若實數(shù)、滿足,則的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.14.對于任意的正數(shù),不等式恒成立,則的最大值為_____.15.某學(xué)習(xí)小組有名男生和名女生.若從中隨機選出名同學(xué)代表該小組參加知識競賽,則選出的名同學(xué)中恰好名男生名女生的概率為___________.16.已知,,分別為內(nèi)角,,的對邊,,,,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,a1=1,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.18.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于、兩點,求的面積.19.(12分)某校共有學(xué)生2000人,其中男生900人,女生1100人,為了調(diào)查該校學(xué)生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學(xué)生每周平均體育鍛煉時間(單位:小時).(1)應(yīng)抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學(xué)生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時間與性別有關(guān)”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87920.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a21.(12分)已知,,為正數(shù),且,證明:(1);(2).22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;(Ⅱ)設(shè)點,直線與曲線相交于,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】依題意有的周期為.而,故應(yīng)左移.2.C【解析】
先從函數(shù)單調(diào)性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識,屬于中檔題.3.D【解析】
根據(jù)統(tǒng)計數(shù)據(jù),求出頻率,用以估計概率.【詳解】.故選:D.【點睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計概率,屬于基礎(chǔ)題.4.D【解析】
作,垂足為,過點N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結(jié)合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識,屬于中檔題.5.A【解析】
可采用假設(shè)法進行討論推理,即可得到結(jié)論.【詳解】由題意,假設(shè)甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,?。何覜]有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設(shè)甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應(yīng)用,其中解答中合理采用假設(shè)法進行討論推理是解答的關(guān)鍵,著重考查了推理與分析判斷能力,屬于基礎(chǔ)題.6.D【解析】
根據(jù)三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關(guān)鍵.7.B【解析】
由已知可得函數(shù)f(x)的周期與對稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時,f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個交點,即函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)為10.故選:B.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.8.A【解析】
畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線,當(dāng)直線過點A時,此時直線在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.【點睛】本題主要考查簡單線性規(guī)劃求解目標(biāo)函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.9.B【解析】
為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認(rèn)為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學(xué)生的分析問題的能力,屬于基礎(chǔ)題.10.D【解析】
由題知,又,代入計算可得.【詳解】由題知,又.故選:D【點睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.11.B【解析】
根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可.【詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“的圖象關(guān)于軸對稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.12.D【解析】
根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.11【解析】
將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進行分類,在其中會有相同元素的排列問題,需用到“縮倍法”.采用分類計數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:,3個,2個:,1個,4個:,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.14.【解析】
根據(jù)均為正數(shù),等價于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價于恒成立,令則,當(dāng)且僅當(dāng)即時取得等號,故的最大值為.故答案為:【點睛】此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵在于合理進行等價變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.15.【解析】
從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結(jié)果【詳解】從7人中隨機選出2人的總數(shù)有,則記選出的名同學(xué)中恰好名男生名女生的概率為事件,∴故答案為:【點睛】組合數(shù)與概率的基本運用,熟悉組合數(shù)公式16.【解析】
根據(jù)題意,利用余弦定理求得,再運用三角形的面積公式即可求得結(jié)果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應(yīng)用和三角形的面積公式,考查計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)項和轉(zhuǎn)換可得,繼而得到,可得解;(2)代入可得,由數(shù)列為遞增數(shù)列可得,,令,可證明為遞增數(shù)列,即,即得解【詳解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵數(shù)列為遞增數(shù)列,∴,即.令,即.∴為遞增數(shù)列,∴,即的取值范圍為.【點睛】本題考查了數(shù)列綜合問題,考查了項和轉(zhuǎn)換,數(shù)列的單調(diào)性,最值等知識點,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于較難題.18.(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時乘以,結(jié)合可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標(biāo)方程是;(2)因為曲線的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線與圓中三角形面積的計算,考查計算能力,屬于中等題.19.(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時間與性別有關(guān).【解析】
(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結(jié)合頻率分布表,先求出二聯(lián)表中數(shù)值,再結(jié)合公式計算,利用表格數(shù)據(jù)對比判斷即可【詳解】(1)因為男生人數(shù):女生人數(shù)=900:1100=9:11,所以男生人數(shù)為,女生人數(shù)100﹣45=55人,(2)由頻率頻率直方圖可知學(xué)生每周平均體育鍛煉時間超過2小時的人數(shù)為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時間超過2小時的女生人數(shù)為37人,聯(lián)表如下:男生女生總計每周平均體育鍛煉時間不超過2小時71825每周平均體育鍛煉時間超過2小時383775總計4555
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于信息技術(shù)支持的初中物理實驗操作能力培養(yǎng)策略研究論文
- 中學(xué)物理實驗誤差控制與腦機接口信號處理算法融合創(chuàng)新論文
- 初中生校園涂鴉藝術(shù)教育與團隊協(xié)作能力的培養(yǎng)論文
- 艾滋檢測點管理制度
- 苗圃場運營管理制度
- 茶藝功能室管理制度
- 設(shè)備承諾書范文
- 北京晶城秀府房地產(chǎn)項目整合推廣案
- 八年級思品上冊(湘師大版)教學(xué)課件-第一節(jié) 生活中的法律保護
- 自動化生產(chǎn)線運行與維護課程標(biāo)準(zhǔn)
- 2023年南昌市外國與學(xué)校小升初能力試題
- 北京市朝陽區(qū)2021-2022學(xué)年四年級下學(xué)期期末語文試卷
- 金融系統(tǒng)反洗錢考試題庫(含答案)
- 甘肅省張掖市2023年中考地理真題試題(含解析)
- 人教小學(xué)數(shù)學(xué)五年級下冊綜合與實踐《怎樣通知最快》示范公開課教學(xué)課件
- 脫不花三十天溝通訓(xùn)練營
- 2023年湖南常德中考語文真題及答案
- “滾球法”計算接閃器保護范圍
- 生產(chǎn)專案持續(xù)改善工作匯報
- 2022年南通如皋市醫(yī)療系統(tǒng)事業(yè)編制鄉(xiāng)村醫(yī)生招聘筆試試題及答案解析
- SB/T 10347-2017糖果壓片糖果
評論
0/150
提交評論