2022年浙江省杭州市錦繡育才教育科技集團數(shù)學(xué)九年級上冊期末學(xué)業(yè)水平測試試題含解析_第1頁
2022年浙江省杭州市錦繡育才教育科技集團數(shù)學(xué)九年級上冊期末學(xué)業(yè)水平測試試題含解析_第2頁
2022年浙江省杭州市錦繡育才教育科技集團數(shù)學(xué)九年級上冊期末學(xué)業(yè)水平測試試題含解析_第3頁
2022年浙江省杭州市錦繡育才教育科技集團數(shù)學(xué)九年級上冊期末學(xué)業(yè)水平測試試題含解析_第4頁
2022年浙江省杭州市錦繡育才教育科技集團數(shù)學(xué)九年級上冊期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.某校九年級“詩歌大會”比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊得分的中位數(shù)是(

)A.9分 B.8分 C.7分 D.6分2.一元二次方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根3.下列圖案中是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個4.已知點A(﹣1,﹣1),點B(1,1),若拋物線y=x2﹣ax+a+1與線段AB有兩個不同的交點(包含線段AB端點),則實數(shù)a的取值范圍是()A.≤a<﹣1 B.≤a≤﹣1 C.<a<﹣1 D.<a≤﹣15.為了考察某種小麥的長勢,從中抽取了5株麥苗,測得苗高(單位:cm)為:10、16、8、17、19,則這組數(shù)據(jù)的極差是()A.8 B.9 C.10 D.116.將n個邊長都為1cm的正方形按如圖所示的方法擺放,點A1,A2,…,An分別是正方形對角線的交點,則n個正方形重疊形成的重疊部分的面積和為()A.cm2 B.cm2 C.cm2 D.()ncm27.同學(xué)們參加綜合實踐活動時,看到木工師傅用“三弧法”在板材邊角處作直角,其作法是:如圖:(1)作線段AB,分別以點A,B為圓心,AB長為半徑作弧,兩弧交于點C;(2)以點C為圓心,仍以AB長為半徑作弧交AC的延長線于點D;(3)連接BD,BC.根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=8.如圖,小明將一個含有角的直角三角板繞著它的一條直角邊所在的直線旋轉(zhuǎn)一周,形成一個幾何體,將這個幾何體的側(cè)面展開,得到的大致圖形是()A. B.C. D.9.是四邊形的外接圓,平分,則正確結(jié)論是()A. B. C. D.10.反比例函數(shù)y=2A.第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限11.設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+a上的三點,則y1,y2,y3的大小關(guān)系為()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y212.如圖,在矩形COED中,點D的坐標是(1,3),則CE的長是()A.3 B. C. D.4二、填空題(每題4分,共24分)13.如圖,⊙M的半徑為4,圓心M的坐標為(6,8),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關(guān)于原點O對稱,則AB的最小值為____.14.從﹣3,﹣2,﹣1,0,1,2這6個數(shù)中任意取出一個數(shù)記作k,則既能使函數(shù)y=的圖象經(jīng)過第一、第三象限,又能使關(guān)于x的一元二次方程x2﹣kx+1=0有實數(shù)根的概率為_____.15.如圖,是的直徑,點、在上,連結(jié)、、、,若,,則的度數(shù)為________.16.已知二次函數(shù)y=x2﹣bx(b為常數(shù)),當2≤x≤5時,函數(shù)y有最小值﹣1,則b的值為_____.17.要使二次根式有意義,則的取值范圍是________.18.已知三點A(0,0),B(5,12),C(14,0),則△ABC內(nèi)心的坐標為____.三、解答題(共78分)19.(8分)某商場購進一種每件價格為90元的新商品,在商場試銷時發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系.(1)求出y與x之間的函數(shù)關(guān)系式;(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?20.(8分)已知二次函數(shù).用配方法求該二次函數(shù)圖象的頂點坐標;在所給坐標系中畫出該二次函數(shù)的圖象,并直接寫出當時自變量的取值范圍.21.(8分)如圖,已知AB是⊙O的直徑,點C在⊙O上,AD垂直于過點C的切線,垂足為D,且∠BAD=80°,求∠DAC的度數(shù).22.(10分)如圖,已知,是一次函數(shù)與反比例函數(shù)圖象的兩個交點,軸于點,軸于點.(1)求一次函數(shù)的解析式及的值;(2)是線段上的一點,連結(jié),若和的面積相等,求點的坐標.23.(10分)綜合與探究:如圖,已知拋物線與x軸相交于A、B兩點,與y軸交于點C,連接BC,點P為線段BC上一動點,過點P作BC的垂線交拋物線于點Q,請解答下列問題:(1)求拋物線與x軸的交點A和B的坐標及頂點坐標(2)求線段PQ長度的最大值,并直接寫出及此時點P的坐標.24.(10分)如圖,在長為10cm,寬為8cm的矩形的四個角上截去四個全等的小正方形,使得留下的圖形(圖中陰影部分)面積是原矩形面積的80%,求所截去小正方形的邊長.25.(12分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個,若從中隨機摸出一個球,這個球是白球的概率為.(1)求袋子中白球的個數(shù);(請通過列式或列方程解答)(2)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)26.為落實立德樹人的根本任務(wù),加強思改、歷史學(xué)科教師的專業(yè)化隊伍建設(shè).某校計劃從前來應(yīng)聘的思政專業(yè)(一名研究生,一名本科生)、歷史專業(yè)(一名研究生、一名本科生)的高校畢業(yè)生中選聘教師,在政治思想審核合格的條件下,假設(shè)每位畢業(yè)生被錄用的機會相等(1)若從中只錄用一人,恰好選到思政專業(yè)畢業(yè)生的概率是:(2)若從中錄用兩人,請用列表或畫樹狀圖的方法,求恰好選到的是一名思政研究生和一名歷史本科生的概率.

參考答案一、選擇題(每題4分,共48分)1、C【解析】分析:根據(jù)中位數(shù)的定義,首先將這組數(shù)據(jù)按從小到大的順序排列起來,由于這組數(shù)據(jù)共有7個,故處于最中間位置的數(shù)就是第四個,從而得出答案.詳解:將這組數(shù)據(jù)按從小到大排列為:6<7<7<7<8<9<9,故中位數(shù)為:7分,故答案為C.點睛:本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義:將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).2、A【分析】先化成一般式后,在求根的判別式,即可確定根的狀況.【詳解】解:原方程可化為:,,,,,方程由兩個不相等的實數(shù)根.故選A.【點睛】本題運用了根的判別式的知識點,把方程轉(zhuǎn)化為一般式是解決問題的關(guān)鍵.3、B【解析】根據(jù)中心對稱圖形的定義:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形可得答案.【詳解】解:第一個不是中心對稱圖形;第二個是中心對稱圖形;第三個不是中心對稱圖形;第四個是中心對稱圖形;故中心對稱圖形的有2個.故選B.【點睛】此題主要考查了中心對稱圖形,關(guān)鍵是找出對稱中心.4、A【分析】根據(jù)題意,先將一次函數(shù)解析式和二次函數(shù)解析式聯(lián)立方程,求出使得這個方程有兩個不同的實數(shù)根時a的取值范圍,然后再求得拋物y=x2﹣ax+a+1經(jīng)過A點時的a的值,即可求得a的取值范圍.【詳解】解:∵點A(﹣1,﹣1),點B(1,1),∴直線AB為y=x,令x=x2﹣ax+a+1,則x2﹣(a+1)x+a+1=0,若直線y=x與拋物線x2﹣ax+a+1有兩個不同的交點,則△=(a+1)2﹣4(a+1)>0,解得,a>3(舍去)或a<﹣1,把點A(﹣1,﹣1)代入y=x2﹣ax+a+1解得a=﹣,由上可得﹣≤a<﹣1,故選:A.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系、二次函數(shù)的性質(zhì)、一次函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.5、D【分析】計算最大數(shù)19與最小數(shù)8的差即可.【詳解】19-8=11,故選:D.【點睛】此題考查極差,即一組數(shù)據(jù)中最大值與最小值的差.6、B【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為n-1陰影部分的和.【詳解】由題意可得陰影部分面積等于正方形面積的,即是,5個這樣的正方形重疊部分(陰影部分)的面積和為×4,n個這樣的正方形重疊部分(陰影部分)的面積和為×(n-1)=cm1.故選B.【點睛】考查了正方形的性質(zhì),解決本題的關(guān)鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.7、D【分析】由作法得CA=CB=CD=AB,根據(jù)圓周角定理得到∠ABD=90°,點C是△ABD的外心,根據(jù)三角函數(shù)的定義計算出∠D=30°,則∠A=60°,利用特殊角的三角函數(shù)值即可得到結(jié)論.【詳解】由作法得CA=CB=CD=AB,故B正確;∴點B在以AD為直徑的圓上,∴∠ABD=90°,故A正確;∴點C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正確;cosD=,故D錯誤,故選:D.【點睛】本題考查了解直角三角形,三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理和解直角三角形.8、C【分析】先根據(jù)面動成體得到圓錐,進而可知其側(cè)面展開圖是扇形,根據(jù)扇形的弧長公式求得扇形的圓心角,即可判別.【詳解】設(shè)含有角的直角三角板的直角邊長為1,則斜邊長為,將一個含有角的直角三角板繞著它的一條直角邊所在的直線旋轉(zhuǎn)一周,形成一個幾何體是圓錐,此圓錐的底面周長為:,圓錐的側(cè)面展開圖是扇形,,即,∴,∵,∴圖C符合題意,故選:C.【點睛】本題考查了點、線、面、體中的面動成體,解題關(guān)鍵是根據(jù)扇形的弧長公式求得扇形的圓心角.9、B【分析】根據(jù)圓心角、弧、弦的關(guān)系對結(jié)論進行逐一判斷即可.【詳解】解:與的大小關(guān)系不確定,與不一定相等,故選項A錯誤;平分,,,故選項B正確;與的大小關(guān)系不確定,與不一定相等,選項C錯誤;∵與的大小關(guān)系不確定,選項D錯誤;故選B.【點睛】本題考查的是圓心角、弧、弦的關(guān)系,在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等.10、A【解析】試題分析:∵k=2>0,∴反比例函數(shù)y=2考點:反比例函數(shù)的性質(zhì).11、A【分析】根據(jù)函數(shù)解析式畫出拋物線以及在圖象上標出三個點的位置,根據(jù)二次函數(shù)圖像的增減性即可得解.【詳解】∵函數(shù)的解析式是,如圖:∴對稱軸是∴點關(guān)于對稱軸的點是,那么點、、都在對稱軸的右邊,而對稱軸右邊隨的增大而減小,于是.故選:A.【點睛】本題考查了二次函數(shù)圖象的對稱性以及增減性,畫出函數(shù)圖像是解題的關(guān)鍵,根據(jù)題意畫出函數(shù)圖象能夠更直觀的解答.12、C【分析】根據(jù)勾股定理求得,然后根據(jù)矩形的性質(zhì)得出.【詳解】解:∵四邊形COED是矩形,∴CE=OD,∵點D的坐標是(1,3),∴,∴,故選:C.【點睛】本題考查的是矩形的性質(zhì),兩點間的距離公式,掌握矩形的對角線的性質(zhì)是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、1【分析】由Rt△APB中AB=2OP知要使AB取得最小值,則PO需取得最小值,連接OM,交⊙M于點P′,當點P位于P′位置時,OP′取得最小值,據(jù)此求解可得.【詳解】解:連接OP,

∵PA⊥PB,

∴∠APB=90°,

∵AO=BO,

∴AB=2PO,

若要使AB取得最小值,則PO需取得最小值,

連接OM,交⊙M于點P′,當點P位于P′位置時,OP′取得最小值,

過點M作MQ⊥x軸于點Q,

則OQ=6、MQ=8,

∴OM=10,

又∵MP′=4,

∴OP′=6,

∴AB=2OP′=1,

故答案為:1.【點睛】本題主要考查點與圓的位置關(guān)系,解題的關(guān)鍵是根據(jù)直角三角形斜邊上的中線等于斜邊的一半得出AB取得最小值時點P的位置.14、.【分析】確定使函數(shù)的圖象經(jīng)過第一、三象限的k的值,然后確定使方程有實數(shù)根的k值,找到同時滿足兩個條件的k的值即可.【詳解】解:這6個數(shù)中能使函數(shù)y=的圖象經(jīng)過第一、第三象限的有1,2這2個數(shù),∵關(guān)于x的一元二次方程x2﹣kx+1=0有實數(shù)根,∴k2﹣4≥0,解得k≤﹣2或k≥2,能滿足這一條件的數(shù)是:﹣3、﹣2、2這3個數(shù),∴能同時滿足這兩個條件的只有2這個數(shù),∴此概率為,故答案為:.15、°【分析】先由直徑所對的圓周角為90°,可得:∠ADB=90°,根據(jù)同圓或等圓中,弦相等得到弧相等得到圓周角相等,得到∠A的度數(shù),根據(jù)直角三角形的性質(zhì)得到∠ABD的度數(shù),即可得出結(jié)論.【詳解】∵AB是⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.∵BD=CD,∴弧BD=弧CD,∴∠A=∠DBC=20°,∴∠ABD=90°-20°=70°,∴∠ABC=∠ABD-∠DBC=70°-20°=50°.故答案為:50°.【點睛】本題考查了圓周角定理,關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半,直徑所對的圓周角為90°.16、【分析】根據(jù)二次函數(shù)y=x2﹣bx(b為常數(shù)),當2≤x≤5時,函數(shù)y有最小值﹣1,利用二次函數(shù)的性質(zhì)和分類討論的方法可以求得b的值.【詳解】∵二次函數(shù)y=x2﹣bx=(x)2,當2≤x≤5時,函數(shù)y有最小值﹣1,∴當5時,x=5時取得最小值,52﹣5b=﹣1,得:b(舍去),當25時,x時取得最小值,1,得:b1=2(舍去),b2=﹣2(舍去),當2時,x=2時取得最小值,22﹣2b=﹣1,得:b,由上可得:b的值是.故答案為:.【點睛】本題考查了二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.17、x≥1【分析】根據(jù)二次根式被開方數(shù)為非負數(shù)進行求解.【詳解】由題意知,,解得,x≥1,故答案為:x≥1.【點睛】本題考查二次根式有意義的條件,二次根式中的被開方數(shù)是非負數(shù).18、(6,4).【分析】作BQ⊥AC于點Q,由題意可得BQ=12,根據(jù)勾股定理分別求出BC、AB的長,繼而利用三角形面積,可得△OAB內(nèi)切圓半徑,過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設(shè)AD=AF=x,則CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,從而得出點P的坐標,即可得出答案.【詳解】解:如圖,過點B作BQ⊥AC于點Q,則AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=設(shè)⊙P的半徑為r,根據(jù)三角形的面積可得:r=過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設(shè)AD=AF=x,則CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴點P的坐標為(6,4),故答案為:(6,4).【點睛】本題主要考查勾股定理、三角形的內(nèi)切圓半徑公式及切線長定理,根據(jù)三角形的內(nèi)切圓半徑公式及切線長定理求出點P的坐標是解題的關(guān)鍵.三、解答題(共78分)19、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【解析】(1)先利用待定系數(shù)法求一次函數(shù)解析式;(2)用每件的利潤乘以銷售量得到每天的利潤W,即W=(x﹣90)(﹣x+170),然后根據(jù)二次函數(shù)的性質(zhì)解決問題.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,根據(jù)題意得:,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴當x=130時,W有最大值2.答:售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【點睛】本題考查了二次函數(shù)的應(yīng)用:利用二次函數(shù)解決利潤問題,先利用利潤=每件的利潤乘以銷售量構(gòu)建二次函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)求二次函數(shù)的最值,一定要注意自變量x的取值范圍.20、(1)頂點坐標為;(2)圖象見解析,由圖象得當時.【分析】(1)用配方法將函數(shù)一般式轉(zhuǎn)化為頂點式即可;(2)采用列表描點法畫出二次函數(shù)圖象即可,根據(jù)函數(shù)圖象,即可判定當時自變量的取值范圍.【詳解】..頂點坐標為列表:············圖象如圖所示由圖象得當時.【點睛】此題主要考查二次函數(shù)頂點式以及圖象的性質(zhì),熟練掌握,即可解題.21、40°【解析】連接OC,根據(jù)切線的性質(zhì)得到OC⊥CD,根據(jù)平行線的性質(zhì)、等腰三角形的性質(zhì)得到∠DAC=∠CAO,得到答案.【詳解】如圖:連接OC,∵CD是⊙O的切線,∴OC⊥CD,又∵AD⊥CD,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠DAC=∠CAO=∠BAD=40°,【點睛】本題考查了切線的性質(zhì),掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.22、(1),m的值為-2;(2)P點坐標為.【分析】(1)由已知條件求出點A,及m的值,將點A,點B代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)設(shè)P點坐標為,根據(jù)“和的面積相等”,表達出兩個三角形的面積,求出點P坐標.【詳解】(1)把B(-1,2)代入中得在反比例函數(shù)圖象上都在一次函數(shù)圖象上解得∴一次函數(shù)解析式為,m的值為-2(2)設(shè)P點坐標為則∴P點坐標為【點睛】本題考查了反比例函數(shù)一次函數(shù),反比例函數(shù)與幾何的綜合知識,解題的關(guān)鍵是靈活運用函數(shù)與幾何的知識.23、(1)點A的坐標為(-2,0),點B的坐標為(1,0),頂點坐標為(1,).(2)PQ的最大值=,此時,點P的坐標為(1,3)【分析】(1)令y=0可求得x的值,可知點A、點B的坐標,運用配方法可求拋物線的頂點坐標;(2)先求出直線BC的表達式,再設(shè)點Q的坐標為(m,)則點E的坐標為(m,-m+1),得QE=-(-m+1)=,求出QE的最大值即可解決問題.【詳解】(1)把y=0代入中得:解得:x1=-2,x2=1∴點A的坐標為(-2,0),點B的坐標為(1,0).∵∴拋物線W的頂點坐標為(1,).(2)過點Q作QF⊥x軸,垂足為F,交線段BC于點E.當x=0時,代入得:y=1,∴點C的坐標為(0,1),∵點B的坐標為(1,0).∴OC=OB=1,∴∠OBC=15°.設(shè)QC的表達式為y=kx+b,把C(0,1),B(1,0)代入解析式得,,解得,,∴直線BC的表達式為y=-x+1.∵QF⊥x軸,PQ⊥BC,∴∠PQE=15°.在Rt△PQE中,∠PQE=∠PEQ=15°,∴當QE最大時,PQ的長也最大.設(shè)點Q的坐標為(m,)則點E的坐標為(m,-m+1).∴/r

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論