




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.圖1所示矩形ABCD中,BC=x,CD=y,y與x滿足的反比例函數(shù)關系如圖2所示,等腰直角三角形AEF的斜邊EF過C點,M為EF的中點,則下列結論正確的是A.當x=3時,EC<EM B.當y=9時,EC>EMC.當x增大時,EC·CF的值增大. D.當y增大時,BE·DF的值不變.2.2018年是江華縣脫貧攻堅摘帽決勝年,11月25號市檢查組來我縣隨機抽查了50戶貧困戶,其中還有1戶還沒有達到脫貧的標準,請聰明的你估計我縣3000戶貧困戶能達到脫貧標準的大約有()戶A.60 B.600 C.2940 D.24003.下列大學?;諆炔繄D案中可以看成由某一個基本圖形通過平移形成的是()A. B. C. D.4.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.65.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①abc<0;②2a+b=0;③b2-4ac<0;④9a+3b+c>0;⑤c+8a<0.正確的結論有().A.1個 B.2個 C.3個 D.4個6.如圖,在?ABCD中,AB=12,AD=8,∠ABC的平分線交CD于點F,交AD的延長線于點E,CG⊥BE,垂足為G,若EF=2,則線段CG的長為()A. B. C. D.7.下列方程中,沒有實數(shù)根的是()A.x2﹣2x﹣3=0 B.(x﹣5)(x+2)=0C.x2﹣x+1=0 D.x2=18.如圖,平行于x軸的直線AC分別交函數(shù)y=x(x≥0)與y=x(x≥0)的圖象于B,C兩點,過點C作y軸的平行線交y=x(x≥0)的圖象于點D,直線DE∥AC交y=x(x≥0)的圖象于點E,則=()A. B.1 C. D.3﹣9.下列一元二次方程中,有一個實數(shù)根為1的一元二次方程是()A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=010.下列數(shù)學符號中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.11.在平面直角坐標系中,將拋物線y=2(x﹣1)2+1先向左平移2個單位,再向上平移3個單位,則平移后拋物線的表達式是()A.y=2(x+1)2+4 B.y=2(x﹣1)2+4C.y=2(x+2)2+4 D.y=2(x﹣3)2+412.如圖,在中,,,,則A. B. C. D.二、填空題(每題4分,共24分)13.如圖是一個三角形點陣,從上向下數(shù)有無數(shù)多行,其中第一行有2個點,第二行有4個點……第n行有2n個點……,若前n行的點數(shù)和為930,則n是________.14.已知關于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是________.15.已知:在⊙O中,直徑AB=4,點P、Q均在⊙O上,且∠BAP=60°,∠BAQ=30°,則弦PQ的長為_____.16.菱形ABCD中,若周長是20cm,對角線AC=6cm,則對角線BD=_____cm.17.如圖,在□ABCD中,E、F分別是AD、CD的中點,EF與BD相交于點M,若△DEM的面積為1,則□ABCD的面積為________.18.如圖,直線,若,則的值為_________三、解答題(共78分)19.(8分)某司機駕駛汽車從甲地去乙地,他以的平均速度用到達目的地.(1)當他按原路勻速返回時,汽車的速度與時間有怎樣的函數(shù)關系?(2)如果該司機返回到甲地的時間不超過,那么返程時的平均速度不能小于多少?20.(8分)如圖,在△ABC中,點D、E分別在邊AB、AC上,DE、BC的延長線相交于點F,且EF·DF=BF·CF.(1)求證:AD·AB=AE·AC;(2)當AB=12,AC=9,AE=8時,求BD的長與的值.21.(8分)已知拋物線C1:y1=a(x﹣h)2+2,直線1:y2=kx﹣kh+2(k≠0).(1)求證:直線l恒過拋物線C的頂點;(2)若a>0,h=1,當t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,求t的取值范圍.(3)點P為拋物線的頂點,Q為拋物線與直線l的另一個交點,當1≤k≤3時,若線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,求a的取值范圍.22.(10分)在一個三角形中,如果有一邊上的中線等于這條邊的一半,那么就稱這個三角形為“智慧三角形”.(1)如圖1,已知、是⊙上兩點,請在圓上畫出滿足條件的點,使為“智慧三角形”,并說明理由;(2)如圖2,是等邊三角形,,以點為圓心,的半徑為1畫圓,為邊上的一動點,過點作的一條切線,切點為,求的最小值;(3)如圖3,在平面直角坐標系中,⊙的半徑為1,點是直線上的一點,若在⊙上存在一點,使得為“智慧三角形”,當其面積取得最小值時,求出此時點的坐標.23.(10分)解方程:(x+2)(x-5)=1.24.(10分)如圖,拋物線與x軸交于A、B兩點,與y軸交C點,點A的坐標為(2,0),點C的坐標為(0,3)它的對稱軸是直線(1)求拋物線的解析式;(2)M是線段AB上的任意一點,當△MBC為等腰三角形時,求M點的坐標.25.(12分)(1)計算(2)解方程.26.某商品的進價為每件50元,售價為每件60元,每個月可賣出200件.如果每件商品的售價上漲1元,則每個月少賣10件(每件售價不能高于72元).設每件商品的售價上漲x元(x為整數(shù)),每個月的銷售利潤為y元,(1)求y與x的函數(shù)關系式,并直接寫出x的取值范圍;(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大月利潤是多少元?
參考答案一、選擇題(每題4分,共48分)1、D【解析】試題分析:由圖象可知,反比例函數(shù)圖象經(jīng)過(3,3),應用待定系數(shù)法可得該反比例函數(shù)關系式為,因此,當x=3時,y=3,點C與點M重合,即EC=EM,選項A錯誤;根據(jù)等腰直角三角形的性質,當x=3時,y=3,點C與點M重合時,EM=,當y=9時,,即EC=,所以,EC<EM,選項B錯誤;根據(jù)等腰直角三角形的性質,EC=,CF=,即EC·CF=,為定值,所以不論x如何變化,EC·CF的值不變,選項C錯誤;根據(jù)等腰直角三角形的性質,BE=x,DF=y,所以BE·DF=,為定值,所以不論y如何變化,BE·DF的值不變,選項D正確.故選D.考點:1.反比例函數(shù)的圖象和性質;2.待定系數(shù)法的應用;3.曲線上點的坐標與方程的關系;4.等腰直角三角形的性質;5.勾股定理.2、C【分析】由題意根據(jù)用總戶數(shù)乘以能達到脫貧標準所占的百分比即可得出答案.【詳解】解:根據(jù)題意得:(戶),答:估計我縣3000戶貧困戶能達到脫貧標準的大約有2940戶.故選:C.【點睛】本題考查的是通過樣本去估計總體,注意掌握總體平均數(shù)約等于樣本平均數(shù)是解題的關鍵.3、C【分析】由平移的性質,分別進行判斷,即可得到答案.【詳解】解:由平移的性質可知,C選項的圖案是通過平移得到的;A、B、D中的圖案不是平移得到的;故選:C.【點睛】本題考查了平移的性質,解題的關鍵是掌握圖案的平移進行解題.4、D【分析】連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關鍵是畫出圖形,找出線段之間的關系.5、C【解析】由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】解:拋物線開口向下,得:a<0;拋物線的對稱軸為x=-=1,則b=-2a,2a+b=0,b=-2a,故b>0;拋物線交y軸于正半軸,得:c>0.∴abc<0,①正確;2a+b=0,②正確;由圖知:拋物線與x軸有兩個不同的交點,則△=b2-4ac>0,故③錯誤;由對稱性可知,拋物線與x軸的正半軸的交點橫坐標是x=3,所以當x=3時,y=9a+3b+c=0,故④錯誤;觀察圖象得當x=-2時,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正確.正確的結論有①②⑤,故選:C【點睛】主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的表達式求2a與b的關系,以及二次函數(shù)與方程之間的轉換,根的判別式的熟練運用.6、C【解析】∵∠ABC的平分線交CD于點F,∴∠ABE=∠CBE,∵四邊形ABCD是平行四邊形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根據(jù)勾股定理得,CG===,故選C.點睛:此題是平行四邊形的性質,主要考查了角平分線的定義,平行線分線段成比例定理,等腰三角形的性質和判定,勾股定理,解本題的關鍵是求出AE,記住:題目中出現(xiàn)平行線和角平分線時,極易出現(xiàn)等腰三角形這一特點.7、C【分析】分別計算出各選項中方程的判別式或方程的根,從而做出判斷.【詳解】解:A.方程x2﹣2x﹣3=0中△=(﹣2)2﹣4×1×(﹣3)=16>0,有兩個不相等的實數(shù)根,不符合題意;B.方程(x﹣5)(x+2)=0的兩根分別為x1=5,x2=﹣2,不符合題意;C.方程x2﹣x+1=0中△=(﹣1)2﹣4×1×1=﹣3<0,沒有實數(shù)根,符合題意;D.方程x2=1的兩根分別為x1=1,x2=﹣1,不符合題意;故選:C.【點睛】本題考查了根的判別式,牢記“當△<0時,方程無實數(shù)根”是解題的關鍵.8、D【分析】設點A的縱坐標為b,可得點B的坐標為(,b),同理可得點C的坐標為(b,b),D點坐標(,3b),E點坐標(,3b),可得的值.【詳解】解:設點A的縱坐標為b,因為點B在的圖象上,所以其橫坐標滿足=b,根據(jù)圖象可知點B的坐標為(,b),同理可得點C的坐標為(,b),所以點D的橫坐標為,因為點D在的圖象上,故可得y==3b,所以點E的縱坐標為3b,因為點E在的圖象上,=3b,因為點E在第一象限,可得E點坐標為(,3b),故DE==,AB=所以=故選D.【點睛】本題主要考查二次函數(shù)的圖象與性質.9、D【分析】由題意,把x=1分別代入方程左邊,然后進行判斷,即可得到答案.【詳解】解:當x=1時,分別代入方程的左邊,則A、1+2=,故A錯誤;B、1-4+4=1,故B錯誤;C、1+4+10=15,故C錯誤;D、1+4-5=0,故D正確;故選:D.【點睛】本題考查了一元二次方程的解,解題的關鍵是分別把x=1代入方程進行解題.10、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的定義即可判斷.【詳解】A既不是軸對稱圖形也不是中心對稱圖形;B是中心對稱圖形,但不是軸對稱圖形;C是軸對稱圖形,但不是中心對稱圖形;D既是軸對稱圖形,又是中心對稱圖形,故選D.【點睛】此題主要考察軸對稱圖形與中心對稱圖形的定義,熟知其定義是解題的關鍵.11、A【分析】只需確定原拋物線解析式的頂點坐標平移后的對應點坐標即可.【詳解】解:原拋物線y=2(x﹣1)2+1的頂點為(1,1),先向左平移2個單位,再向上平移3個單位,新頂點為(﹣1,4).即所得拋物線的頂點坐標是(﹣1,4).所以,平移后拋物線的表達式是y=2(x+1)2+4,故選:A.【點睛】本題主要考查了二次函數(shù)圖像的平移,拋物線的解析式為頂點式時,求出頂點平移后的對應點坐標,可得平移后拋物線的解析式,熟練掌握二次函數(shù)圖像的平移規(guī)律是解題的關鍵.12、A【解析】先利用勾股定理求出斜邊AB,再求出sinB即可.【詳解】∵在中,,,,∴,∴.故答案為A.【點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題關鍵是熟記三角函數(shù)的定義.二、填空題(每題4分,共24分)13、1【分析】根據(jù)題意得出這個點陣中前n行的點數(shù)和等于2+4+6+8+……+2n,再計算即可.【詳解】解:根據(jù)題意知,2+4+6+8+……+2n
=2(1+2+3+…+n)
=2×n(n+1)
=n(n+1).∴,解得:(負值已舍去);故答案為:1.【點睛】此題考查圖形的變化規(guī)律,結合圖形,找出數(shù)字的運算規(guī)律,利用規(guī)律解決問題.14、【分析】根據(jù)一元二次方程的根的判別式,建立關于k的不等式,求出k的取值范圍.【詳解】根據(jù)一元二次方程的根的判別式,建立關于k的不等式,求出k的取值范圍.,,方程有兩個不相等的實數(shù)根,,.故答案為:.【點睛】本題考查了根的判別式.總結:一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.15、2或1【分析】當點P和Q在AB的同側,如圖1,連接OP、OQ、PQ,先計算出∠PAQ=30°,根據(jù)圓周角定理得到∠POQ=60°,則可判斷△OPQ為等邊三角形,從而得到PQ=OP=2;當點P和Q在AB的同側,如圖1,連接PQ,先計算出∠PAQ=90°,根據(jù)圓周角定理得到PQ為直徑,從而得到PQ=1.【詳解】解:當點P和Q在AB的同側,如圖1,連接OP、OQ、PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=30°,∴∠POQ=2∠PAQ=2×30°=60°,∴△OPQ為等邊三角形,∴PQ=OP=2;當點P和Q在AB的同側,如圖1,連接PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=90°,∴PQ為直徑,∴PQ=1,綜上所述,PQ的長為2或1.故答案為2或1.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.16、1【分析】先根據(jù)周長求出菱形的邊長,再根據(jù)菱形的對角線互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.【詳解】解:如圖,∵菱形ABCD的周長是20cm,對角線AC=6cm,∴AB=20÷4=5cm,AO=AC=3cm,又∵AC⊥BD,∴BO==4cm,∴BD=2BO=1cm.故答案為:1.【點睛】本題考查了菱形的性質,屬于簡單題,熟悉菱形對角線互相垂直且平分是解題關鍵.17、16【詳解】延長EF交BC的延長線與H,在平行四邊形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF,△DEM∽△BHM∴,∵F是CD的中點∴DF=CF∴DE=CH∵E是AD中點∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵∴∴∴∴∴∴∴∵四邊形ABCD是平行四邊形∴故答案為:16.18、【解析】先由得出,再根據(jù)平行線分線段成比例定理即可得到結論.【詳解】∵,∴,∵a∥b∥c,∴=.故答案為:.【點睛】本題考查了平行線分線段成比例定理,掌握三條平行線截兩條直線,所得的對應線段成比例是解題的關鍵.三、解答題(共78分)19、(1);(2).【分析】(1)利用路程=平均速度×時間,進而得出汽車的速度v與時間t的函數(shù)關系;
(2)結合該司機必須在5個小時之內回到甲地,列出不等式進而得出速度最小值.【詳解】(1)由題意得,兩地路程為,∴汽車的速度與時間的函數(shù)關系為;(2)由,得,又由題意知:,∴,∵,∴,∴.答:返程時的平均速度不能小于1.【點睛】本題主要考查了反比例函數(shù)的應用,根據(jù)路程=平均速度×時間得出函數(shù)關系是解題關鍵.20、(1)答案見解析;(2)BD=6,【分析】(1)根據(jù)相似三角形的判定得出△EFC∽△BFD,得出∠CEF=∠B,進而證明△CAB∽△DAE,再利用相似三角形的性質證明即可;(2)根據(jù)相似三角形的性質得出有關圖形的面積之比,進而解答即可.【詳解】證明:(1)∵EF?DF=BF?CF,
∵∠EFC=∠BFD,∴△EFC∽△BFD∴∠CEF=∠B,∴∠B=∠AED∵∠CAB=∠DAE,∴△CAB∽△DAE∴∴AD·AB=AE·AC.(2)由(1)知AD·AB=AE·AC∴AD=6,BD=6,EC=1∵,∴∵∴∴.點睛:本題考查相似三角形的判定和性質知識,解題的關鍵是靈活運用相似三角形的判定解答.21、(1)證明見解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函數(shù)的性質找出拋物線的頂點坐標,將x=h代入一次函數(shù)解析式中可得出點(h,2)在直線1上,進而可證出直線l恒過拋物線C1的頂點;(2)由a>0可得出當x=h=1時y1=a(x﹣h)2+2取得最小值2,結合當t≤x≤t+3時二次函數(shù)y1=a(x﹣h)2+2的最小值為2,可得出關于t的一元一次不等式組,解之即可得出結論;(3)令y1=y(tǒng)2可得出關于x的一元二次方程,解之可求出點P,Q的橫坐標,由線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,可得出>1或<﹣1,再結合1≤k≤3,即可求出a的取值范圍.【詳解】(1)∵拋物線C1的解析式為y1=a(x﹣h)2+2,∴拋物線的頂點為(h,2),當x=h時,y2=kx﹣kh+2=2,∴直線l恒過拋物線C1的頂點;(2)∵a>0,h=1,∴當x=1時,y1=a(x﹣h)2+2取得最小值2,又∵當t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,∴,∴﹣2≤t≤1;(3)令y1=y(tǒng)2,則a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+,∵線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,∴>1或<﹣1,∵k>0,∴0<a<k或﹣k<a<0,又∵1≤k≤3,∴﹣1<a<0或0<a<1.【點睛】本題考查了二次函數(shù)的性質、一次函數(shù)圖象上點的坐標特征、二次函數(shù)的最值、解一元二次方程以及解不等式,解題的關鍵是:(1)利用二次函數(shù)的性質及一次函數(shù)圖象上點的坐標特征,證出直線l恒過拋物線C的頂點;(2)利用二次函數(shù)的性質結合二次函數(shù)的最值,找出關于t的一元一次不等式組;(3)令y1=y(tǒng)2,求出點P,Q的橫坐標.22、(1)見解析;(2);(1)或【分析】(1)連接AO并且延長交圓于,連接AO并且延長交圓于,即可求解;
(2)根據(jù)MN為⊙的切線,應用勾股定理得,所以OM最小時,MN最??;根據(jù)垂線段最短,得到當M和BC中點重合時,OM最小為,此時根據(jù)勾股定理求解DE,DE和MN重合,即為所求;
(1)根據(jù)“智慧三角形”的定義可得為直角三角形,根據(jù)題意可得一條直角邊為1,當寫斜邊最短時,另一條直角邊最短,則面積取得最小值,由垂線段最短可得斜邊最短為1,根據(jù)勾股定理可求得另一條直角邊,再根據(jù)三角形面積可求得斜邊的高,即點P的橫坐標,再根據(jù)勾股定理可求點P的縱坐標,從而求解.【詳解】(1)如圖1,點和均為所求理由:連接、并延長,分別交于點、,連接、,∵是的直徑,∴,∴是“智慧三角形”同理可得,也是“智慧三角形”(2)∵是的切線,∴,∴,∴當最小時,最小,即當時,取得最小值,如圖2,作于點,過點作的一條切線,切點為,連接,∵是等邊三角形,,∴,,∴,∵是的一條切線,∴,,∴,當點與重合時,與重合,此時/r/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆浙江省寧波市東錢湖九校七下生物期末學業(yè)水平測試試題含解析
- 技能鑒定鐵路軌道類-客運值班員題庫真題庫-2
- 安全文明工地培訓課件
- 2025年四川眉山市歌舞劇院有限責任公司招聘筆試參考題庫附帶答案詳解
- 2025年安徽阜合園區(qū)企業(yè)江汽阜陽分公司招聘筆試參考題庫附帶答案詳解
- 2025年山東博興縣方圓控股集團有限公司招聘筆試參考題庫附帶答案詳解
- 安全提升課件
- 福建中考英語語法單選題100道及答案
- 小心夾手安全教育課件
- 孩子姓名寓意課件
- 激光焊接培訓課件
- 2021-2023全國事業(yè)單位聯(lián)考A類《綜合應用能力》真題及參考答案 (三套)
- 2025山東能源集團中級人才庫選拔易考易錯模擬試題(共500題)試卷后附參考答案
- 山東省歷年中考語文現(xiàn)代文閱讀之非連續(xù)性文本閱讀20篇(截至2024年)
- 第8章76種標準解法
- 《頁巖氣(頁巖油)開發(fā)地塊特征污染物土壤環(huán)境生態(tài)安全閾值確定技術指南編制說明》
- 2024年09月全國2024廈門國際銀行青年銀行家(分行市場類)校園招考筆試歷年參考題庫附帶答案詳解
- 保護環(huán)境的課件英文版
- 醫(yī)院預防職務犯罪講座
- 2025屆山東省師大附中高考數(shù)學一模試卷含解析
- 房產(chǎn)出租授權委托書
評論
0/150
提交評論