下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
FrameworkSS3R9
Correlation
and
regressionR10
Multiple
regression
and
issues
in
regression
ysisR11
Time-series
ysisR12
Excerpt
from
“Probabilistic
Approaches:
Scenarioysis,
Decision
Trees,
and
Simulation”2-23R9Correlation
and
regression3-23Correlation
ysisSignificance
test(Hypothesis
test)計算H0
:
0;t
test
RejectH0
RejectH0α/2
95%
α/2t
r
n
2
,df
n
21
r2
-t
critical
+t
critical結(jié)論:例如reject
the
null
hypothesis
->the
correlationcoefficient
between
X
and
Y
is
significantly
different
from
zero.Limitation①Outliers(異常值):few
extreme
values②
Spurious
correlation:no
economic
explanation③
Nonlinear
relationships:Correlation
onlymeasures
the
linear
relationship4-23Simple
Linear
Regression建模ANOVA
Table分析檢驗?zāi)P徒
i
b0
b1Xi
i,i
1,,
nYj
=
dependent
variable,explained
variable,predicted
variableXj
=independent
variable,explanatory
variable,predictingvariableAssumption①
A
linear
relationship
exists
between
X
and
Y②
X
is
uncorrelated
with
the
error
term.i.e.,
E(
)
0③
The
expected
value
of
the
error
term
is
zeroi④The
variance
of
the
error
term
is
constant
(homoskedastic)⑤The
error
term
is
uncorrelated
across
observations(E(εiεj)=O
for
all
i≠j)⑥The
error
term
is
normally
distributed.CoefficientEstimation解釋:An
estimated
slope
coefficient
of
2:Y
will
change
two
units
for
every1
unitchange
in
X.Intercept
term
of
2%:the
X
iszero,Y
is
2%.計算b1
Cov(
X
,Y
)Var(
X
)b0
Y
b1
X5-23ANOVATable分析dfSSMSSRegressionk=1RSSMSR=RSS/kErrorn-k-1SSEMSE=SSE(n-k-1)Totaln-1SST-CoefficientDetermination(R2)解釋:R2of
0.90
indicates
that
the
variation
of
the
independent
variableexplains
90%of
the
variation
in
the
dependent
variable.SEE計算:性質(zhì):The
SEE
gauges
the
"fit"
of
the
regression
line.
The
smaller
thestandard
error,the
betler
the
fit.The
SEE
is
the
standard
deviation
of
the
error
terms
in
the
regression.結(jié)
論計算:R2
SSR
1
SSESST
SSTYY?R2
r
2XY(多元都成立)>一元:R2
r
2SSE6-23
MSESEE
n
k
1Simple
Linear
Regression模型檢驗:回歸分析相當(dāng)于抽樣估計考試時給定條件CoefficientStandard
deviationt-statisticp-valueInterceptb?0S
?b0?0.18Slopeb?1S
?b1?<0.001參數(shù)估計(confidenceinterval)b?
t
s
t
:查表
t分布1
c
b?
c1
Confidence
level
(置信度)As
SEE
rises,
Sb?
a|so
incmses1假設(shè)檢驗(significancelevel)H0:b1=0(沒有特殊說明,題目中假設(shè)檢驗都是檢驗是否為0)t
b?
b
b
1 1
?S
0
df=n-2b?0Decision
rule:
reject
HO
if
+t
critical<t,
or
t
<
t
criticalRejection
of
the
null
means
that
the
slope
coefficient
isdifferent
from
zeroSimple
Linear
Regression7-23(Predicted
Value
of
Y)Point
estimateY?
b?
b?
Xo
1Confidence
interval
estimateY?
(tc
s
f
)了解Simple
Linear
Regression模型
:只要求掌握抽樣估計8-23R10Multiple
regression
and
issues
in
regression
ysis9-23Difference
compared
with
unit
regressionInterpreting
thecoefficientEach
slope
coefficient
is
the
estimated
change
in
Y
for
a
one
unit
change
inXj,holding
the
other
independent
varbia?
jbles
constant.單個檢驗
H
:
b
0
t
df
n
k1Significancetest(t-test):
0
jSb?j聯(lián)合檢驗(F-test):The
test
assesses
the
effectiveness
of
the
model
as
awhole
in
explaining
the
dependent
variableH0:b1=b2=b3=...=bk=0Ha:
atleast
one
b≠j0(j=1
to
k) F
MSR
SSR
/
k
reject
H0:
if
F(test-statistic)>Fc(critical
value)
MSE
SSE
/(n
k
1)The
F-test
hereis
always
a
one-tailed
testR2解釋:R2
of
0.90
indicates
that
the
model,
as
a
whole,explains
90%of
thevariation
in
the
dependent
variable.缺點:R2
almost
always
increases
as
variable
are
added
to
the
model,
even
if
themarginal
contribution
of
the
new
variables
is
not
statistically
significant.adjusted
R2
1
1
R2
adjusted
R2
1
n
1
n
k
1SSE/n
k
1
SST/n
1R2r2YY?R2
r2XYHereoskedasticityImpactUnconditional:
no
major
problemsConditional:significant
problemsNot
affect
the
consistency
of
parameter
estimatorsCoefficient
estimates
are
not
affectedStandard
errors
are
usually
unrelliable
estimatestoo
small Type
?
errortoo
large Type
∥
errorDctectionBreush-Pagen
2
testHo:
No
hereoskedasticityBP=n×Rr
2,
df=k,
one-tailed
testesidualCorrectionrobust,
or
White-corrected
standard
eroorsgeneralized
least
squaresMultiple
Regression
Assumption
Violations11-23Multiple
Regression
Assumption
ViolationsSerial
correlation(autocorrelation)ImpactSerial
correlation
is
often
found
in
time
series
dataNot
affect
the
consistency
of
estimated
regression
coefficients
and
coefficientestimatesPositive
serial
correlation
is
much
common:
Positive
serial
correlation→
coefficient
standard
errors
that
are
too
small
→Type
?
error
&
F-test
unreliableDetectionDurbin-Watson
test
(看下圖)→Ho:No
serial
correlation,
DW≈2×(1-r)Reject
H0,
Not
reject
HInconclusive
RejectH0,positive
serial
Inconclusive
0
positive
serialcorrelation
correlation0
d1
du
2
4-du
4-d1
4Correctionadjusting
the
coefficient
standard
errors(e.g.,Hansen
method):
the
Hansenmethod
also
corrects
for
conditional
heteroskedaticity
.incorporate
thetime-seriesnature12-23Multiple
Regression
Assumption
ViolationsMulticollinearityImpactCoefficient
estimates
are
imprecise
and
unreliable;
not
affectconsistency;
inflate
standard
error->
type
∥
errorDetection①t-test都丌通過,即單個檢驗的b=0;F-test顯著;R2
is
high。以上同時出現(xiàn),一定有Multicollinearity。②
?rx1x2?>0.7CorrectionRemove
one
or
more
independent
variables13-23Dummy
variablesModelMisspecification模型Qualitative
variable:
0
and
1n
categories->n-1
dummy
variables例:EPSt
=b0
+b1Q1t
+b2Q2t
+b3Q3t
+εtEPSt
=
a
quarterly
observation
of
earnings
pershareQ1t
=1
if
period
t
is
the
ftrst
quarter,Q1t
=0
otherwiseQ2t
=1
if
periodt
is
thesecond
quarter,Q2t
=0
otherwiseQ3t
=1
ifperiodt
is
the
third
quarter,Q3t
=0otherwiseInterpreting
thecoefficientsb0:
average
value
of
EPS
for
the
fourth
quarterSlope
coefficient:
difference
in
EPS(o age)
between
therespective
quarter
(i.e.,quarter
1,2,or
3)and
the
omitled
quarter.比如,b1=EPS1-EPS4①
The
functional
form
can
be
misspecified.Important
variables
are
omitled.Variables
should
be
transformed.Data
is
improperly
pooled.②Time
series
misspecification
.A
lagged
Y
is
used
as
an
X
with
serially
correlated
errors.A
function
ofthe
Y
is
used
as
an
X
(forecastingthe
past).Independent
variables
are
measured
with
error.③Time-series
data:
nonstationarity.14-23R11Time-Series
ysis15-23Trend
Models每期增長量是constant
amount每期的增長率是constant
rateLinear
trendLog-linear
trend
model用DWtest檢驗ε
是否有serialcorrelationNo使用trend
modelYesARModel以AR(1)開始模型的估計AR(P)
xt
b0
b1xt1
b2
xt2...
bp
xt
p
tChain
rule
of
forecastingx?t
1
b?
b?x
計算0
1
tAssumption(具體看后面)No
autocorrelationNo
Conditional
HeteroskedasticityCovariance-stationary
series檢驗是否有Seasonality(類似autocorrelation)xt
b0
b1xt1
b2
xt
4
tCompareforecasting
powersmallest
RMSE
forout-of-sample
一〉最好RMSE計算Yt
b0
b1Xt
tXt,Yt
都是time
series
dataRegression
with
More
Than
One
Time
Series具體看后面16-23AR
Model
assumption1、No
autocorrelation:針對residual
termDetectionH0
:
,0No
autocorrelationt
tkt
statistics
,
t
tk1/n
standard
error=1/
nRejectH0:
t>
+
t
critical,or
t
<
-
t
criticalCorrectionReject
Ho:(add
lagged
values)AR(1)
→AR(2)考試時給的表格17-231-0.15380.0528-2.914220.10970.05282.078230.06570.05281.244240.09200.05281.7434Autocorrelations
of
tte
ResidualLag
Autocorrelation
StandardErrort-Statistic2、No
Conditional
Heteroskedasticity:針對residual
term(用ARCH)含義Heteroskedasticity
refers
to
the
situation
that
the
variance
of
the
errorterm
is
notconstantDetectionTest
Conditional
Heteroskedasticity
=
Test
whether
a
time
series
is
ARCH(1)
2
a
a
2
ut
0 1
t
1
ta1
is
significantly
different
from
0一>Conditional
Heteroskedasticity
existCorrectionGeneralized
least
squares含義3、Covariance-stationary
series:針對Xtxt
b0
b1xt1
tCovariance-stationaryMean
reversionMean-reverting
:x
>mean->x
+1<xt
txt<mean->xt+1>xt
b
01
b1t相反Simplerandomwalk:
Xt
=Xt-1+εtRandom
walkwith
a
drift:①Constant
and
finite
expected
value
of
thetimeseries②Constant
and
finite
variance
of
the
timeseries③Constant
and
finite
covariance
withleading
or
lagged
valuesRandom
walk b1=1(undefinedmean)unit
root
nonstationary檢驗修正Define
yt
as
yt=xt-xt-1->
AR(1)
model
yt=bo+b1yt-1+utThe
unit
root
test
of
nonstationarity:
Dickey-Fuller
test(DF
test)xt
b0
b1
xt
1
xt
1
t
xt
b0
gxt
1
t
(
g
b1
1)H0:g=0
(has
a
unit
root
and
is
nonstationary);Ha:g<0Reject
H0->the
time
series
does
not
have
a
unit
root
and
is
stationarydifferencingxt
b0
b1xt
1
t
(b0
0)18-23Regression
with
More
Than
One
Time
SeriesScenarios是否可做多元回歸None
of
the
timeseries
has
a
unit
rootAt
least
onetime
series
has
a
unit
root
while
at
least
one
timeseriesdoes
not×Each
time
series
has
a
unit
root:whetherthe
time
series
are
cointegrated
?conintegrated×nocointegrationTest
the
cointegration:Dickey-Fuller
Engle-Granger
test
(DF-EG
test)Ho:
no
cointegration Ha:cointegrationIf
we
can
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 紙條畫創(chuàng)意手工課程設(shè)計
- 思政大賽課程設(shè)計特色
- 楷書結(jié)構(gòu)講解課程設(shè)計
- 紙模課程設(shè)計
- 植物運營插畫課程設(shè)計
- 礦山機械課程設(shè)計
- 環(huán)境噪音檢測課程設(shè)計
- 幼兒園小小班課程設(shè)計
- 海洋信息化課程設(shè)計理念
- 無機鹽合成中的微波輔助技術(shù)考核試卷
- 2024年湖北省漢江國有資本投資集團有限公司招聘筆試參考題庫含答案解析
- 脂肪肝健康教育-課件
- 廣州市九區(qū)聯(lián)考2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷(原卷版)
- 體育與健康(水平二)《花樣跳繩一級動作(18課時)》大單元教學(xué)計劃
- 游戲方案模板
- 地產(chǎn)集團品牌管理辦法
- 2024年廚房述職報告
- 腹腔穿刺術(shù)評分表
- 護理疑難病例討論肺心病
- 汽車產(chǎn)品定義 培訓(xùn)課件
- NICU患兒常規(guī)監(jiān)測和護理要點
評論
0/150
提交評論