二級數(shù)量分析知識框架圖_第1頁
二級數(shù)量分析知識框架圖_第2頁
二級數(shù)量分析知識框架圖_第3頁
二級數(shù)量分析知識框架圖_第4頁
二級數(shù)量分析知識框架圖_第5頁
免費預(yù)覽已結(jié)束,剩余17頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

FrameworkSS3R9

Correlation

and

regressionR10

Multiple

regression

and

issues

in

regression

ysisR11

Time-series

ysisR12

Excerpt

from

“Probabilistic

Approaches:

Scenarioysis,

Decision

Trees,

and

Simulation”2-23R9Correlation

and

regression3-23Correlation

ysisSignificance

test(Hypothesis

test)計算H0

:

0;t

test

RejectH0

RejectH0α/2

95%

α/2t

r

n

2

,df

n

21

r2

-t

critical

+t

critical結(jié)論:例如reject

the

null

hypothesis

->the

correlationcoefficient

between

X

and

Y

is

significantly

different

from

zero.Limitation①Outliers(異常值):few

extreme

values②

Spurious

correlation:no

economic

explanation③

Nonlinear

relationships:Correlation

onlymeasures

the

linear

relationship4-23Simple

Linear

Regression建模ANOVA

Table分析檢驗?zāi)P徒

i

b0

b1Xi

i,i

1,,

nYj

=

dependent

variable,explained

variable,predicted

variableXj

=independent

variable,explanatory

variable,predictingvariableAssumption①

A

linear

relationship

exists

between

X

and

Y②

X

is

uncorrelated

with

the

error

term.i.e.,

E(

)

0③

The

expected

value

of

the

error

term

is

zeroi④The

variance

of

the

error

term

is

constant

(homoskedastic)⑤The

error

term

is

uncorrelated

across

observations(E(εiεj)=O

for

all

i≠j)⑥The

error

term

is

normally

distributed.CoefficientEstimation解釋:An

estimated

slope

coefficient

of

2:Y

will

change

two

units

for

every1

unitchange

in

X.Intercept

term

of

2%:the

X

iszero,Y

is

2%.計算b1

Cov(

X

,Y

)Var(

X

)b0

Y

b1

X5-23ANOVATable分析dfSSMSSRegressionk=1RSSMSR=RSS/kErrorn-k-1SSEMSE=SSE(n-k-1)Totaln-1SST-CoefficientDetermination(R2)解釋:R2of

0.90

indicates

that

the

variation

of

the

independent

variableexplains

90%of

the

variation

in

the

dependent

variable.SEE計算:性質(zhì):The

SEE

gauges

the

"fit"

of

the

regression

line.

The

smaller

thestandard

error,the

betler

the

fit.The

SEE

is

the

standard

deviation

of

the

error

terms

in

the

regression.結(jié)

論計算:R2

SSR

1

SSESST

SSTYY?R2

r

2XY(多元都成立)>一元:R2

r

2SSE6-23

MSESEE

n

k

1Simple

Linear

Regression模型檢驗:回歸分析相當(dāng)于抽樣估計考試時給定條件CoefficientStandard

deviationt-statisticp-valueInterceptb?0S

?b0?0.18Slopeb?1S

?b1?<0.001參數(shù)估計(confidenceinterval)b?

t

s

t

:查表

t分布1

c

b?

c1

Confidence

level

(置信度)As

SEE

rises,

Sb?

a|so

incmses1假設(shè)檢驗(significancelevel)H0:b1=0(沒有特殊說明,題目中假設(shè)檢驗都是檢驗是否為0)t

b?

b

b

1 1

?S

0

df=n-2b?0Decision

rule:

reject

HO

if

+t

critical<t,

or

t

<

t

criticalRejection

of

the

null

means

that

the

slope

coefficient

isdifferent

from

zeroSimple

Linear

Regression7-23(Predicted

Value

of

Y)Point

estimateY?

b?

b?

Xo

1Confidence

interval

estimateY?

(tc

s

f

)了解Simple

Linear

Regression模型

:只要求掌握抽樣估計8-23R10Multiple

regression

and

issues

in

regression

ysis9-23Difference

compared

with

unit

regressionInterpreting

thecoefficientEach

slope

coefficient

is

the

estimated

change

in

Y

for

a

one

unit

change

inXj,holding

the

other

independent

varbia?

jbles

constant.單個檢驗

H

:

b

0

t

df

n

k1Significancetest(t-test):

0

jSb?j聯(lián)合檢驗(F-test):The

test

assesses

the

effectiveness

of

the

model

as

awhole

in

explaining

the

dependent

variableH0:b1=b2=b3=...=bk=0Ha:

atleast

one

b≠j0(j=1

to

k) F

MSR

SSR

/

k

reject

H0:

if

F(test-statistic)>Fc(critical

value)

MSE

SSE

/(n

k

1)The

F-test

hereis

always

a

one-tailed

testR2解釋:R2

of

0.90

indicates

that

the

model,

as

a

whole,explains

90%of

thevariation

in

the

dependent

variable.缺點:R2

almost

always

increases

as

variable

are

added

to

the

model,

even

if

themarginal

contribution

of

the

new

variables

is

not

statistically

significant.adjusted

R2

1

1

R2

adjusted

R2

1

n

1

n

k

1SSE/n

k

1

SST/n

1R2r2YY?R2

r2XYHereoskedasticityImpactUnconditional:

no

major

problemsConditional:significant

problemsNot

affect

the

consistency

of

parameter

estimatorsCoefficient

estimates

are

not

affectedStandard

errors

are

usually

unrelliable

estimatestoo

small Type

?

errortoo

large Type

errorDctectionBreush-Pagen

2

testHo:

No

hereoskedasticityBP=n×Rr

2,

df=k,

one-tailed

testesidualCorrectionrobust,

or

White-corrected

standard

eroorsgeneralized

least

squaresMultiple

Regression

Assumption

Violations11-23Multiple

Regression

Assumption

ViolationsSerial

correlation(autocorrelation)ImpactSerial

correlation

is

often

found

in

time

series

dataNot

affect

the

consistency

of

estimated

regression

coefficients

and

coefficientestimatesPositive

serial

correlation

is

much

common:

Positive

serial

correlation→

coefficient

standard

errors

that

are

too

small

→Type

?

error

&

F-test

unreliableDetectionDurbin-Watson

test

(看下圖)→Ho:No

serial

correlation,

DW≈2×(1-r)Reject

H0,

Not

reject

HInconclusive

RejectH0,positive

serial

Inconclusive

0

positive

serialcorrelation

correlation0

d1

du

2

4-du

4-d1

4Correctionadjusting

the

coefficient

standard

errors(e.g.,Hansen

method):

the

Hansenmethod

also

corrects

for

conditional

heteroskedaticity

.incorporate

thetime-seriesnature12-23Multiple

Regression

Assumption

ViolationsMulticollinearityImpactCoefficient

estimates

are

imprecise

and

unreliable;

not

affectconsistency;

inflate

standard

error->

type

errorDetection①t-test都丌通過,即單個檢驗的b=0;F-test顯著;R2

is

high。以上同時出現(xiàn),一定有Multicollinearity。②

?rx1x2?>0.7CorrectionRemove

one

or

more

independent

variables13-23Dummy

variablesModelMisspecification模型Qualitative

variable:

0

and

1n

categories->n-1

dummy

variables例:EPSt

=b0

+b1Q1t

+b2Q2t

+b3Q3t

+εtEPSt

=

a

quarterly

observation

of

earnings

pershareQ1t

=1

if

period

t

is

the

ftrst

quarter,Q1t

=0

otherwiseQ2t

=1

if

periodt

is

thesecond

quarter,Q2t

=0

otherwiseQ3t

=1

ifperiodt

is

the

third

quarter,Q3t

=0otherwiseInterpreting

thecoefficientsb0:

average

value

of

EPS

for

the

fourth

quarterSlope

coefficient:

difference

in

EPS(o age)

between

therespective

quarter

(i.e.,quarter

1,2,or

3)and

the

omitled

quarter.比如,b1=EPS1-EPS4①

The

functional

form

can

be

misspecified.Important

variables

are

omitled.Variables

should

be

transformed.Data

is

improperly

pooled.②Time

series

misspecification

.A

lagged

Y

is

used

as

an

X

with

serially

correlated

errors.A

function

ofthe

Y

is

used

as

an

X

(forecastingthe

past).Independent

variables

are

measured

with

error.③Time-series

data:

nonstationarity.14-23R11Time-Series

ysis15-23Trend

Models每期增長量是constant

amount每期的增長率是constant

rateLinear

trendLog-linear

trend

model用DWtest檢驗ε

是否有serialcorrelationNo使用trend

modelYesARModel以AR(1)開始模型的估計AR(P)

xt

b0

b1xt1

b2

xt2...

bp

xt

p

tChain

rule

of

forecastingx?t

1

b?

b?x

計算0

1

tAssumption(具體看后面)No

autocorrelationNo

Conditional

HeteroskedasticityCovariance-stationary

series檢驗是否有Seasonality(類似autocorrelation)xt

b0

b1xt1

b2

xt

4

tCompareforecasting

powersmallest

RMSE

forout-of-sample

一〉最好RMSE計算Yt

b0

b1Xt

tXt,Yt

都是time

series

dataRegression

with

More

Than

One

Time

Series具體看后面16-23AR

Model

assumption1、No

autocorrelation:針對residual

termDetectionH0

:

,0No

autocorrelationt

tkt

statistics

,

t

tk1/n

standard

error=1/

nRejectH0:

t>

+

t

critical,or

t

<

-

t

criticalCorrectionReject

Ho:(add

lagged

values)AR(1)

→AR(2)考試時給的表格17-231-0.15380.0528-2.914220.10970.05282.078230.06570.05281.244240.09200.05281.7434Autocorrelations

of

tte

ResidualLag

Autocorrelation

StandardErrort-Statistic2、No

Conditional

Heteroskedasticity:針對residual

term(用ARCH)含義Heteroskedasticity

refers

to

the

situation

that

the

variance

of

the

errorterm

is

notconstantDetectionTest

Conditional

Heteroskedasticity

=

Test

whether

a

time

series

is

ARCH(1)

2

a

a

2

ut

0 1

t

1

ta1

is

significantly

different

from

0一>Conditional

Heteroskedasticity

existCorrectionGeneralized

least

squares含義3、Covariance-stationary

series:針對Xtxt

b0

b1xt1

tCovariance-stationaryMean

reversionMean-reverting

:x

>mean->x

+1<xt

txt<mean->xt+1>xt

b

01

b1t相反Simplerandomwalk:

Xt

=Xt-1+εtRandom

walkwith

a

drift:①Constant

and

finite

expected

value

of

thetimeseries②Constant

and

finite

variance

of

the

timeseries③Constant

and

finite

covariance

withleading

or

lagged

valuesRandom

walk b1=1(undefinedmean)unit

root

nonstationary檢驗修正Define

yt

as

yt=xt-xt-1->

AR(1)

model

yt=bo+b1yt-1+utThe

unit

root

test

of

nonstationarity:

Dickey-Fuller

test(DF

test)xt

b0

b1

xt

1

xt

1

t

xt

b0

gxt

1

t

(

g

b1

1)H0:g=0

(has

a

unit

root

and

is

nonstationary);Ha:g<0Reject

H0->the

time

series

does

not

have

a

unit

root

and

is

stationarydifferencingxt

b0

b1xt

1

t

(b0

0)18-23Regression

with

More

Than

One

Time

SeriesScenarios是否可做多元回歸None

of

the

timeseries

has

a

unit

rootAt

least

onetime

series

has

a

unit

root

while

at

least

one

timeseriesdoes

not×Each

time

series

has

a

unit

root:whetherthe

time

series

are

cointegrated

?conintegrated×nocointegrationTest

the

cointegration:Dickey-Fuller

Engle-Granger

test

(DF-EG

test)Ho:

no

cointegration Ha:cointegrationIf

we

can

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論