版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2020屆二輪(理科數(shù)學(xué))
正切函數(shù)的圖象與性質(zhì)
專題卷(全國(guó)通用)1.關(guān)于x的函數(shù)f(x)=tan(x+φ),說法錯(cuò)誤的是(
)A.對(duì)任意的φ,f(x)都是非奇非偶函數(shù)B.f(x)的圖象關(guān)于對(duì)稱C.f(x)的圖象關(guān)于(π-φ,0)對(duì)稱D.f(x)是以π為最小正周期的周期函數(shù)A[A若取φ=kπ(k∈Z),則f(x)=tanx,此時(shí),f(x)為奇函數(shù),所以A錯(cuò);觀察正切函數(shù)y=tanx的圖象,可知y=tanx關(guān)于(k∈Z)對(duì)稱,令x+φ=得x=-φ,分別令k=1,2知B、C正確,D顯然正確.]2.函數(shù)y=3tan的最小正周期是,則ω=(
)A.4
B.2
C.-2
D.2或-2D[由=,可知ω=±2.]3.已知函數(shù)y=tanωx在內(nèi)是減函數(shù),則ω的取值范圍是(
)A.(-1,0)
B.[-1,0)C.(0,1)
D.(0,1]B[∵y=tanωx在內(nèi)是減函數(shù),∴T=≥π,∴0<|ω|≤1.∵y=tanx在內(nèi)為增函數(shù),∴ω<0,∴-1≤ω<0.]二、填空題4.比較大?。簍an________tan.<[tan=tan=tan.∵y=tanx在上是增函數(shù)且0<<<,∴tan<tan,即tan<tan.]5.函數(shù)y=6tan的對(duì)稱中心為________.(k∈Z)[y=6tan=-6tan,由6x-=,k∈Z得x=+,k∈Z,故對(duì)稱中心為,k∈Z.]6.若tanx>tan且x在第三象限,則x的取值范圍是________.(k∈Z)[tanx>tan=tan,又x為第三象限角,∴2kπ+<x<2kπ+(k∈Z).]三、解答題7.已知f(x)=tan.(1)求f(x)的最小正周期;(2)若f(x+φ)是奇函數(shù),則φ應(yīng)滿足什么條件?并求出滿足|φ|<的φ值.[解](1)法一:∵y=tanx的周期是π,∴y=tan的周期是.法二:由誘導(dǎo)公式知:tan=tan=tan,即f=f(x).∴f(x)的最小正周期是.(2)∵f(x+φ)=tan是奇函數(shù),∴圖象關(guān)于原點(diǎn)中心對(duì)稱,∴+2φ=(k∈Z),∴φ=-(k∈Z).令<(k∈Z),解得-<k<,k∈Z.∴k=-1,0,1或2.從而得φ=-,-,或.8.設(shè)函數(shù)f(x)=tan(ωx+φ),已知函數(shù)y=f(x)的圖象與x軸相鄰兩個(gè)交點(diǎn)的距離為,且圖象關(guān)于點(diǎn)M對(duì)稱.(1)求f(x)的解析式;(2)求f(x)的單調(diào)區(qū)間;(3)求不等式-1≤f(x)≤的解集.[解](1)由題意知,函數(shù)f(x)的最小正周期為T=,即=.因?yàn)棣?gt;0,所以ω=2,從而f(x)=tan(2x+φ).因?yàn)楹瘮?shù)y=f(x)的圖象關(guān)于點(diǎn)M對(duì)稱,所以2×+φ=,k∈Z,即φ=+,k∈Z.因?yàn)?<φ<,所以φ=,故f(x)=tan.(2)令-+kπ<2x+<+kπ,k∈Z,得-+kπ<2x<kπ+,k∈Z,即-+<x<+,k∈Z.所以函數(shù)的單調(diào)增區(qū)間為,k∈Z,無單調(diào)減區(qū)間.(3)由(1)知,f(x)=tan.由-1≤tan≤,得-+kπ≤2x+≤+kπ,k∈Z,即-+≤x≤+,k∈Z.所以不等式-1≤f(x)≤的解集為x≤x≤+,k∈Z.[等級(jí)過關(guān)練]1.已知函數(shù)y=,則下列說法中:①周期是π且有一條對(duì)稱軸x=0;②周期是2π且有一條對(duì)稱軸x=0;③周期是2π且有一條對(duì)稱軸x=π;④非周期函數(shù)但有無數(shù)條對(duì)稱軸.上述結(jié)論正確的是(
)A.①④
B.②③C.①③
D.②④B[如圖是函數(shù)的圖象,由圖象可知函數(shù)周期為2π,對(duì)稱軸為x=kπ(k∈Z).
]2.函數(shù)y=tanx+sinx-|tanx-sinx|在區(qū)間內(nèi)的圖象是(
)D[當(dāng)<x<π時(shí),tanx<sinx,y=2tanx<0;當(dāng)x=π時(shí),y=0;當(dāng)π<x<π時(shí),tanx>sinx,y=2sinx<0.故選D.]1.不等式tanx≥1的解集是________.
(k∈Z)[由正切函數(shù)圖象(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度樓頂廣告牌租賃期廣告位使用規(guī)范合同4篇
- 二零二五版中央空調(diào)系統(tǒng)銷售及維護(hù)一體化服務(wù)合同3篇
- 專業(yè)技術(shù)職務(wù)聘任合同書(2024年度)版
- 2025年度高鐵站臨建施工及安全監(jiān)管合同4篇
- 二零二五版供應(yīng)鏈融資借款合同補(bǔ)簽協(xié)議3篇
- 二零二五年架子工高空作業(yè)安全承包合同范本6篇
- 二零二五年股份有限公司股東先行墊資及資金返還合同3篇
- 2025版高速公路綠化帶養(yǎng)護(hù)專項(xiàng)服務(wù)合同4篇
- 2025年度新型物流企業(yè)陸上運(yùn)輸貨物全面保險(xiǎn)服務(wù)合同4篇
- 二零二五年度集資房購(gòu)房合同綠色建筑認(rèn)證合同3篇
- 河南省鄭州外國(guó)語高中-【高二】【上期中】【把握現(xiàn)在 蓄力高三】家長(zhǎng)會(huì)【課件】
- 天津市武清區(qū)2024-2025學(xué)年八年級(jí)(上)期末物理試卷(含解析)
- 2025年中煤電力有限公司招聘筆試參考題庫(kù)含答案解析
- 企業(yè)內(nèi)部控制與財(cái)務(wù)風(fēng)險(xiǎn)防范
- 高端民用航空復(fù)材智能制造交付中心項(xiàng)目環(huán)評(píng)資料環(huán)境影響
- 建設(shè)項(xiàng)目施工現(xiàn)場(chǎng)春節(jié)放假期間的安全管理方案
- 胃潴留護(hù)理查房
- 污水處理廠運(yùn)營(yíng)方案計(jì)劃
- 眼科慢病管理新思路
- 三菱張力控制器LE-40MTA-E說明書
- 生活垃圾填埋場(chǎng)污染控制標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論