版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為比較甲、乙兩名高二學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測(cè)驗(yàn)(指標(biāo)值滿分為5分,分值高者為優(yōu)),根據(jù)測(cè)驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差2.已知,若則實(shí)數(shù)的取值范圍是()A. B. C. D.3.函數(shù)且的圖象是()A. B.C. D.4.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()5.函數(shù)的圖象向右平移個(gè)單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的值為()A. B. C.2 D.6.已知函數(shù),則下列結(jié)論錯(cuò)誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個(gè)單位長度得到7.已知集合,則元素個(gè)數(shù)為()A.1 B.2 C.3 D.48.的內(nèi)角的對(duì)邊分別為,已知,則角的大小為()A. B. C. D.9.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.12810.已知集合,則等于()A. B. C. D.11.已知命題,且是的必要不充分條件,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.要排出高三某班一天中,語文、數(shù)學(xué)、英語各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)的圖像與直線的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)分別是,,,則實(shí)數(shù)的值為________.14.展開式中的系數(shù)為________.15.設(shè)α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個(gè)命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號(hào)為_____.16.正方形的邊長為2,圓內(nèi)切于正方形,為圓的一條動(dòng)直徑,點(diǎn)為正方形邊界上任一點(diǎn),則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)求二面角的正切值.18.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.19.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),且.①求實(shí)數(shù)的取值范圍;②求證:.20.(12分)據(jù)《人民網(wǎng)》報(bào)道,美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動(dòng)主導(dǎo)了地球變綠.據(jù)統(tǒng)計(jì),中國新增綠化面積的來自于植樹造林,下表是中國十個(gè)地區(qū)在去年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復(fù)人工更新內(nèi)蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請(qǐng)根據(jù)上述數(shù)據(jù)分別寫出在這十個(gè)地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過的概率;(3)在這十個(gè)地區(qū)中,從退化林修復(fù)面積超過一萬公頃的地區(qū)中,任選兩個(gè)地區(qū),記X為這兩個(gè)地區(qū)中退化林修復(fù)面積超過六萬公頃的地區(qū)的個(gè)數(shù),求X的分布列及數(shù)學(xué)期望.21.(12分)在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C交于M,N兩點(diǎn),求△MON的面積.22.(10分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;(2)已知點(diǎn)、的極坐標(biāo)分別為和,直線與曲線相交于,兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項(xiàng).【詳解】根據(jù)雷達(dá)圖得到如下數(shù)據(jù):數(shù)學(xué)抽象邏輯推理數(shù)學(xué)建模直觀想象數(shù)學(xué)運(yùn)算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點(diǎn)睛】本題考查統(tǒng)計(jì)問題,考查數(shù)據(jù)處理能力和應(yīng)用意識(shí).2.C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因?yàn)椋杂薪?,即有解,所以,得,,所以,又因?yàn)?,所以,即,可化為,因?yàn)椋缘慕饧?,所以或,解得,故選:C【點(diǎn)睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題,3.B【解析】
先判斷函數(shù)的奇偶性,再取特殊值,利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)分布情況,即可得解.【詳解】由題可知定義域?yàn)?,,是偶函?shù),關(guān)于軸對(duì)稱,排除C,D.又,,在必有零點(diǎn),排除A.故選:B.【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.4.D【解析】
由題意利用兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,兩個(gè)向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對(duì)應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對(duì)應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點(diǎn)睛】本題主要考查兩個(gè)向量坐標(biāo)形式的運(yùn)算,兩個(gè)向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.5.C【解析】由函數(shù)的圖象向右平移個(gè)單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時(shí),取得最大值,即,,,當(dāng)時(shí),解得,故選C.點(diǎn)睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時(shí),取得最大值,求解可得實(shí)數(shù)的值.6.D【解析】
由可判斷選項(xiàng)A;當(dāng)時(shí),可判斷選項(xiàng)B;利用整體換元法可判斷選項(xiàng)C;可判斷選項(xiàng)D.【詳解】由題知,最小正周期,所以A正確;當(dāng)時(shí),,所以B正確;當(dāng)時(shí),,所以C正確;由的圖象向左平移個(gè)單位,得,所以D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對(duì)稱性、單調(diào)性以及圖象變換后的解析式等知識(shí),是一道中檔題.7.B【解析】
作出兩集合所表示的點(diǎn)的圖象,可得選項(xiàng).【詳解】由題意得,集合A表示以原點(diǎn)為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點(diǎn),作出兩集合所表示的點(diǎn)的示意圖如下圖所示,得出兩個(gè)圖象有兩個(gè)交點(diǎn):點(diǎn)A和點(diǎn)B,所以兩個(gè)集合有兩個(gè)公共元素,所以元素個(gè)數(shù)為2,故選:B.【點(diǎn)睛】本題考查集合的交集運(yùn)算,關(guān)鍵在于作出集合所表示的點(diǎn)的圖象,再運(yùn)用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.8.A【解析】
先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡,可求出解B.【詳解】由正弦定理可得,即,即有,因?yàn)?,則,而,所以.故選:A【點(diǎn)睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.9.C【解析】
根據(jù)給定的程序框圖,逐次計(jì)算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10.C【解析】
先化簡集合A,再與集合B求交集.【詳解】因?yàn)椋?,所?故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算以及分式不等式的解法,屬于基礎(chǔ)題.11.D【解析】
求出命題不等式的解為,是的必要不充分條件,得是的子集,建立不等式求解.【詳解】解:命題,即:,是的必要不充分條件,,,解得.實(shí)數(shù)的取值范圍為.故選:.【點(diǎn)睛】本題考查根據(jù)充分、必要條件求參數(shù)范圍,其思路方法:(1)解決此類問題一般是把充分條件、必要條件或充要條件轉(zhuǎn)化為集合之間的關(guān)系,然后根據(jù)集合之間關(guān)系列出關(guān)于參數(shù)的不等式(組)求解.(2)求解參數(shù)的取值范圍時(shí),一定要注意區(qū)間端點(diǎn)值的檢驗(yàn).12.C【解析】
根據(jù)題意,分兩種情況進(jìn)行討論:①語文和數(shù)學(xué)都安排在上午;②語文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計(jì)數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進(jìn)行討論:①語文和數(shù)學(xué)都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時(shí),排法種數(shù)為種;②語文和數(shù)學(xué)都一個(gè)安排在上午,一個(gè)安排在下午.語文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時(shí),排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分類計(jì)數(shù)原理的應(yīng)用,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】
由題可分析函數(shù)與的三個(gè)相鄰交點(diǎn)中不相鄰的兩個(gè)交點(diǎn)距離為,即,進(jìn)而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點(diǎn)睛】本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦型函數(shù)中的14.30【解析】
先將問題轉(zhuǎn)化為二項(xiàng)式的系數(shù)問題,利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的第項(xiàng),令的指數(shù)分別等于2,4,求出特定項(xiàng)的系數(shù).【詳解】由題可得:展開式中的系數(shù)等于二項(xiàng)式展開式中的指數(shù)為2和4時(shí)的系數(shù)之和,由于二項(xiàng)式的通項(xiàng)公式為,令,得展開式的的系數(shù)為,令,得展開式的的系數(shù)為,所以展開式中的系數(shù),故答案為30.【點(diǎn)睛】本題考查利用二項(xiàng)式展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)的問題,考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.15.④【解析】
根據(jù)直線和平面,平面和平面的位置關(guān)系依次判斷每個(gè)選項(xiàng)得到答案.【詳解】對(duì)于①,當(dāng)m∥n時(shí),由直線與平面平行的定義和判定定理,不能得出m∥α,①錯(cuò)誤;對(duì)于②,當(dāng)m?α,n?α,且m∥β,n∥β時(shí),由兩平面平行的判定定理,不能得出α∥β,②錯(cuò)誤;對(duì)于③,當(dāng)α∥β,且m?α,n?β時(shí),由兩平面平行的性質(zhì)定理,不能得出m∥n,③錯(cuò)誤;對(duì)于④,當(dāng)α⊥β,且α∩β=m,n?α,m⊥n時(shí),由兩平面垂直的性質(zhì)定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號(hào)是④.故答案為:④.【點(diǎn)睛】本題考查了直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的空間想象能力和推斷能力.16.【解析】
根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點(diǎn)睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運(yùn)算,關(guān)鍵在于恰當(dāng)?shù)貙?duì)向量進(jìn)行轉(zhuǎn)換,便于計(jì)算解題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見證明;(2)【解析】
(1)取PD中點(diǎn)G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點(diǎn)O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點(diǎn)G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點(diǎn)O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點(diǎn)睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計(jì)算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計(jì)算.18.(1)證明見解析;(2)【解析】
(1)由已知可證,即可證明結(jié)論;(2)根據(jù)已知可證平面,建立空間直角坐標(biāo)系,求出坐標(biāo),進(jìn)而求出平面和平面的法向量坐標(biāo),由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點(diǎn),∴,∵平面且,∴平面,以為原點(diǎn),分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,∴設(shè)平面的法向量為,則,∴,取,則.設(shè)平面的法向量為,則,∴,取,則.∴,設(shè)二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點(diǎn),因?yàn)樗倪呅螢槠叫兴倪呅?,所以為中點(diǎn),又因?yàn)樗倪呅螢榱庑?,所以為中點(diǎn),∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點(diǎn)睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數(shù)學(xué)運(yùn)算的數(shù)學(xué)核心素養(yǎng),屬于中檔題.19.(1);(2)①;②詳見解析.【解析】
(1)由函數(shù)在處的切線與直線垂直,即可得,對(duì)其求導(dǎo)并表示,代入上述方程即可解得答案;(2)①已知要求等價(jià)于在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時(shí)單調(diào)性推及極值說明即可;②由①可知,是方程的兩個(gè)不等的實(shí)根,由韋達(dá)定理可表達(dá)根與系數(shù)的關(guān)系,進(jìn)而用含的式子表示,令,對(duì)求導(dǎo)分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而求最值證明不等式成立.【詳解】解:(1)依題意,,,故,所以,據(jù)題意可知,,解得.所以實(shí)數(shù)的值為.(2)①因?yàn)楹瘮?shù)在定義域上有兩個(gè)極值點(diǎn),且,所以在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根.所以解得.當(dāng)時(shí),若或,,,函數(shù)在和上單調(diào)遞增;若,,,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個(gè)極值點(diǎn),且.所以,實(shí)數(shù)的取值范圍是.②由①可知,是方程的兩個(gè)不等的實(shí)根,所以其中.故,令,其中.故,令,,在上單調(diào)遞增.由于,,所以存在常數(shù),使得,即,,且當(dāng)時(shí),,在上單調(diào)遞減;當(dāng)時(shí),,在上單調(diào)遞增,所以當(dāng)時(shí),,又,,所以,即,故得證.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、兩直線的位置關(guān)系、由極值點(diǎn)個(gè)數(shù)求參數(shù)范圍問題,還考查了利用導(dǎo)數(shù)證明不等式成立,屬于難題.20.(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海?。唬?);(3)分布列見詳解,數(shù)學(xué)期望為【解析】
(1)通過數(shù)據(jù)的觀察以及計(jì)算人工造林面積與造林總面積比值,可得結(jié)果.(2)通過數(shù)據(jù)的觀察以及計(jì)算新封山育林面積與造林總面積比值,得出比值超過的地區(qū)個(gè)數(shù),然后可得結(jié)果.(3)計(jì)算退化林修復(fù)面積超過一萬公頃的地區(qū)中選兩個(gè)地區(qū)總數(shù),退化林修復(fù)面積超過六萬公頃的地區(qū)的個(gè)數(shù)為,列出所有取值并計(jì)算相應(yīng)概率,然后可得結(jié)果.【詳解】(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海省.(2)記事件A:在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),該地區(qū)新封山育林面積占總面積的比值超過根據(jù)數(shù)據(jù)可知:青海地區(qū)人工造林面積占總面積比超過,則(3)退化林修復(fù)面積超過一萬公頃有6個(gè)地區(qū):內(nèi)蒙、河北、河南、重慶、陜西、新疆,其中退化林修復(fù)面積超過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 稅務(wù)籌劃與企業(yè)成本
- 商業(yè)步行街租賃承包協(xié)議
- 8.1生命可以永恒嗎-【幫課堂】2023-2024學(xué)年七上道德與法治
- 沙漠公園綠化草種管理辦法
- 醫(yī)院清潔服務(wù)合同模板
- 承包化妝部合同范例
- 成都奶茶采購合同范例
- 房屋裝飾包工合同模板
- 國際企業(yè)合同范例
- 建筑用制式合同范例
- 廢塑料資源化利用項(xiàng)目環(huán)境影響評(píng)價(jià)
- 2024時(shí)事政治試題庫(附含答案)
- 《食品安全抽樣檢驗(yàn)工作規(guī)范》附件文書2024
- ISO 55013-2024 資產(chǎn)管理-數(shù)據(jù)資產(chǎn)管理指南(中文版-雷澤佳翻譯-2024)
- 2024-2025學(xué)年湖南省常德市小學(xué)六年級(jí)英語上冊(cè)期末同步自測(cè)試卷及答案
- 2024年俄羅斯高空作業(yè)平臺(tái)車行業(yè)應(yīng)用與市場(chǎng)潛力評(píng)估
- 室外管網(wǎng)施工組織設(shè)計(jì)
- 2023國產(chǎn)服務(wù)器操作系統(tǒng)
- 2024石灰石粉混凝土
- 《無機(jī)化學(xué)》課件-分子間作用力
- 游樂園的冰雪項(xiàng)目設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論