山東省濟寧市微山縣2022年數(shù)學九年級上冊期末質量檢測試題含解析_第1頁
山東省濟寧市微山縣2022年數(shù)學九年級上冊期末質量檢測試題含解析_第2頁
山東省濟寧市微山縣2022年數(shù)學九年級上冊期末質量檢測試題含解析_第3頁
山東省濟寧市微山縣2022年數(shù)學九年級上冊期末質量檢測試題含解析_第4頁
山東省濟寧市微山縣2022年數(shù)學九年級上冊期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,在中,,,,則A. B. C. D.2.如圖,重慶歡樂谷的摩天輪是西南地區(qū)最高的摩天輪,號稱“重慶之限”.摩天輪是一個圓形,直徑AB垂直水平地面于點C,最低點B離地面的距離BC為1.6米.某天,媽媽帶著洋洋來坐摩天輪,當她站在點D仰著頭看見摩天輪的圓心時,仰角為37o,為了選擇更佳角度為洋洋拍照,媽媽后退了49米到達點D’,當洋洋坐的橋廂F與圓心O在同一水平線時,他俯頭看見媽媽的眼睛,此時俯角為42o,已知媽媽的眼睛到地面的距離為1.6米,媽媽兩次所處的位置與摩天輪在同一平面上,則該摩天輪最高點A離地面的距離AC約是()(參考數(shù)據(jù):sin37o≈0.60,tan37o≈0.75,sin42o≈0.67,tan42o≈0.90)A.118.8米 B.127.6米 C.134.4米 D.140.2米3.如圖,正方形的邊長為4,點是的中點,點從點出發(fā),沿移動至終點,設點經過的路徑長為,的面積為,則下列圖象能大致反映與函數(shù)關系的是()A. B. C. D.4.在平面直角坐標系中,若干個半徑為1的單位長度,圓心角為60°的扇形組成一條連續(xù)的曲線,點P從原點O出發(fā),向右沿這條曲線做上下起伏運動(如圖),點P在直線上運動的速度為每1個單位長度.點P在弧線上運動的速度為每秒個單位長度,則2019秒時,點P的坐標是()A. B.C. D.5.如圖,在等腰中,于點,則的值()A. B. C. D.6.如圖,是的直徑,是的弦,若,則().A. B. C. D.7.如圖,中,,,,則的長為()A. B. C.5 D.8.已知二次函數(shù)y=-x2+2mx+2,當x<-2時,y的值隨x的增大而增大,則實數(shù)m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-29.把多項式分解因式,結果正確的是()A. B.C. D.10.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中線,以C為圓心,5cm為半徑作⊙C,則點M與⊙C的位置關系為()A.點M在⊙C上 B.點M在⊙C內 C.點M在⊙C外 D.點M不在⊙C內11.已知正方形的邊長為4cm,則其對角線長是()A.8cm B.16cm C.32cm D.cm12.如圖所示,A,B是函數(shù)的圖象上關于原點O的任意一對對稱點,AC平行于y軸,BC平行于x軸,△ABC的面積為S,則()A.S=1 B.S=2 C.1<S<2 D.S>2二、填空題(每題4分,共24分)13.如圖,在扇形OAB中,∠AOB=90°,半徑OA=1.將扇形OAB沿過點B的直線折疊.點O恰好落在延長線上點D處,折痕交OA于點C,整個陰影部分的面積_____.14.已知A(﹣4,y1),B(﹣1,y2)是反比例函數(shù)y=-(k>0)圖象上的兩個點,則y1與y2的大小關系為_____.15.如圖,點是雙曲線在第二象限分支上的一個動點,連接并延長交另一分支于點,以為底作等腰,且,點在第一象限,隨著點的運動點的位置也不斷變化,但點始終在雙曲線上運動,則的值為________.16.如圖,△ABC中,D為BC上一點,∠BAD=∠C,AB=6,BD=4,則CD的長為____.17.已知<cosA<sin70°,則銳角A的取值范圍是_________18.如圖,⊙O的半徑OC=10cm,直線l⊥OC,垂足為H,交⊙O于A,B兩點,AB=16cm,直線l平移____________cm時能與⊙O相切.三、解答題(共78分)19.(8分)如圖①,在直角坐標系中,點A的坐標為(1,0),以OA為邊在第一象限內作正方形OABC,點D是x軸正半軸上一動點(OD>1),連接BD,以BD為邊在第一象限內作正方形DBFE,設M為正方形DBFE的中心,直線MA交y軸于點N.如果定義:只有一組對角是直角的四邊形叫做損矩形.(1)試找出圖1中的一個損矩形;(2)試說明(1)中找出的損矩形的四個頂點一定在同一個圓上;(3)隨著點D位置的變化,點N的位置是否會發(fā)生變化?若沒有發(fā)生變化,求出點N的坐標;若發(fā)生變化,請說明理由;(4)在圖②中,過點M作MG⊥y軸于點G,連接DN,若四邊形DMGN為損矩形,求D點坐標.20.(8分)2019年12月17日,我國第一艘國產航母“山東艦”在海南三亞交付海軍.如圖,“山東艦”在一次試水測試中,航行至處,觀測指揮塔位于南偏西方向,在沿正南方向以30海里/小時的速度勻速航行2小時后,到達處,再觀測指揮塔位于南偏西方向,若繼續(xù)向南航行.求“山東艦”與指揮塔之間的最近距離為多少海里?(結果保留根號)21.(8分)如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CD⊥AB于點E.(1)求證:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半徑.22.(10分)如圖,矩形AOBC放置在平面直角坐標系xOy中,邊OA在y軸的正半軸上,邊OB在x軸的正半軸上,拋物線的頂點為F,對稱軸交AC于點E,且拋物線經過點A(0,2),點C,點D(3,0).∠AOB的平分線是OE,交拋物線對稱軸左側于點H,連接HF.(1)求該拋物線的解析式;(2)在x軸上有動點M,線段BC上有動點N,求四邊形EAMN的周長的最小值;(3)該拋物線上是否存在點P,使得四邊形EHFP為平行四邊形?如果存在,求出點P的坐標;如果不存在,請說明理由.23.(10分)如圖,在中,,點P為內一點,連接PA,PB,PC,求PA+PB+PC的最小值,小華的解題思路,以點A為旋轉中心,將順時針旋轉得到,那么就將求PA+PB+PC的值轉化為求PM+MN+PC的值,連接CN,當點P,M落在CN上時,此題可解.(1)請判斷的形狀,并說明理由;(2)請你參考小華的解題思路,證明PA+PB+PC=PM+MN+PC;(3)當,求PA+PB+PC的最小值.24.(10分)2019年鞍山市出現(xiàn)了豬肉價格大幅上漲的情況,經過對我市某豬肉經銷商的調查發(fā)現(xiàn),當豬肉售價為60元/千克時,每天可以銷售80千克,日銷售利潤為1600元(不考慮其他因素對利潤的影響):售價每上漲1元,則每天少售出2千克;若設豬肉售價為x元/千克,日銷售量為y千克.(1)求y關于x的函數(shù)解析式(不要求寫出自變量的取值范圍);(2)若物價管理部門規(guī)定豬肉價格不高于68元/千克,當售價是多少元/千克時,日銷售利潤最大,最大利潤是多少元.25.(12分)如圖,△ABC的邊BC在x軸上,且∠ACB=90°.反比例函數(shù)y=(x>0)的圖象經過AB邊的中點D,且與AC邊相交于點E,連接CD.已知BC=2OB,△BCD的面積為1.(1)求k的值;(2)若AE=BC,求點A的坐標.26.已知:如圖,,點在射線上.求作:正方形,使線段為正方形的一條邊,且點在內部.

參考答案一、選擇題(每題4分,共48分)1、A【解析】先利用勾股定理求出斜邊AB,再求出sinB即可.【詳解】∵在中,,,,∴,∴.故答案為A.【點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題關鍵是熟記三角函數(shù)的定義.2、B【分析】連接EB,根據(jù)已知條件得到E′,E,B在同一條直線上,且E′B⊥AC,過F做FH⊥BE于H,則四邊形BOFH是正方形,求得BH=FH=OB,設AO=OB=r,解直角三角形即可得到結論.【詳解】解:連接EB,∵D′E′=DE=BC=1.6∴E′,E,B在同一條直線上,且E′B⊥AC,過F做FH⊥BE于H,則四邊形BOFH是正方形,∴BH=FH=OB,設AO=OB=r,∴FH=BH=r,∵∠OEB=37°,∴tan37°=,∴BE=,∴EH=BD-BH=,∵EE′=DD′=49,∴E′H=49+,∵∠FE′H=42°,∴tan42°=,解得r≈63,∴AC=2×63+1.6=127.6米,故選:B.【點睛】本題考查了解直角三角形——仰角與俯角問題,正方形的判定和性質,正確的作出輔助線是解題的關鍵.3、C【分析】結合題意分情況討論:①當點P在AE上時,②當點P在AD上時,③當點P在DC上時,根據(jù)三角形面積公式即可得出每段的y與x的函數(shù)表達式.【詳解】①當點在上時,∵正方形邊長為4,為中點,∴,∵點經過的路徑長為,∴,∴,②當點在上時,∵正方形邊長為4,為中點,∴,∵點經過的路徑長為,∴,,∴,,,,③當點在上時,∵正方形邊長為4,為中點,∴,∵點經過的路徑長為,∴,,∴,綜上所述:與的函數(shù)表達式為:.故答案為C.【點睛】本題考查動點問題的函數(shù)圖象,解決動點問題的函數(shù)圖象問題關鍵是發(fā)現(xiàn)y隨x的變化而變化的趨勢.4、B【分析】設第n秒運動到Pn(n為自然數(shù))點,根據(jù)點P的運動規(guī)律找出部分Pn點的坐標,根據(jù)坐標的變化找出變化規(guī)律“P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0)”,依此規(guī)律即可得出結論.【詳解】解:設第n秒運動到Pn(n為自然數(shù))點,觀察,發(fā)現(xiàn)規(guī)律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0).∵2019=4×504+3,∴P2019為(,﹣),故答案為B.【點睛】本題考查了規(guī)律型中的點的坐標,解題的關鍵是找出變化規(guī)律并根據(jù)規(guī)律找出點的坐標.5、D【分析】先由,易得,由可得,進而用勾股定理分別將BD、BC長用AB表示出來,再根據(jù)即可求解.【詳解】解:∵,,∴,∴,又∵,∴,在中,,∴,故選:D【點睛】本題主要考查了解三角形,涉及了等腰三角形性質和勾股定理以及三角函數(shù)的定義.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結合思想的應用.6、B【分析】根據(jù)AB是⊙O的直徑得出∠ADB=90°,再求出∠A的度數(shù),由圓周角定理即可推出∠BCD的度數(shù).【詳解】∵AB是⊙O的直徑,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故選B.【點睛】本題考查圓周角定理及其推論,熟練掌握圓周角定理是解題的關鍵.7、C【解析】過C作CD⊥AB于D,根據(jù)含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【詳解】過C作CD⊥AB于D,則∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故選C.【點睛】本題考查解直角三角形.8、C【解析】根據(jù)二次函數(shù)的性質,確定拋物線的對稱軸及開口方向得出函數(shù)的增減性,結合題意確定m值的范圍.【詳解】解:拋物線的對稱軸為直線∵,拋物線開口向下,∴當時,y的值隨x值的增大而增大,∵當時,y的值隨x值的增大而增大,∴,故選:C.【點睛】本題考查了二次函數(shù)的性質,主要利用了二次函數(shù)的增減性,由系數(shù)的符號特征得出函數(shù)性質是解答此題的關鍵.9、B【分析】如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法.平方差公式:;完全平方公式:;【詳解】解:,故選B.【點睛】本題考查了分解因式,熟練運用平方差公式是解題的關鍵10、A【解析】根據(jù)題意可求得CM的長,再根據(jù)點和圓的位置關系判斷即可.【詳解】如圖,∵由勾股定理得AB==10cm,∵CM是AB的中線,∴CM=5cm,∴d=r,所以點M在⊙C上,故選A.【點睛】本題考查了點和圓的位置關系,解決的根據(jù)是點在圓上?圓心到點的距離=圓的半徑.11、D【分析】作一個邊長為4cm的正方形,連接對角線,構成一個直角三角形如下圖所示:由勾股定理得AC2=AB2+BC2,求出AC的值即可.【詳解】解:如圖所示:四邊形ABCD是邊長為4cm的正方形,在Rt△ABC中,由勾股定理得:AC==4cm.所以對角線的長:AC=4cm.故選D.12、B【分析】設點A(m,),則根據(jù)對稱的性質和垂直的特點,可以表示出B、C的坐標,根據(jù)坐標關系得出BC、AC的長,從而得出△ABC的面積.【詳解】設點A(m,)∵A、B關于原點對稱∴B(-m,)∴C(m,)∴AC=,BC=2m∴=2故選:B【點睛】本題考查反比例函數(shù)和關于原點對稱點的求解,解題關鍵是表示出A、B、C的坐標,從而得出△ABC的面積.二、填空題(每題4分,共24分)13、9π﹣12.【詳解】解:連接OD交BC于點E,∠AOB=90°,∴扇形的面積==9π,由翻折的性質可知:OE=DE=3,在Rt△OBE中,根據(jù)特殊銳角三角函數(shù)值可知∠OBC=30°,在Rt△COB中,CO=2,∴△COB的面積=1,∴陰影部分的面積為=9π﹣12.故答案為9π﹣12.【點睛】本題考查翻折變換(折疊問題)及扇形面積的計算,掌握圖形之間的面積關系是本題的解題關鍵.14、y1<y1【分析】根據(jù)雙曲線所在的象限,得出y隨x的增大而增大,即可判斷.【詳解】解:∵k>0,∴﹣k<0,因此在每個象限內,y隨x的增大而增大,∵﹣4<﹣1,∴y1<y1,故答案為:y1<y1.【點睛】此題主要考查反比例函數(shù)的圖像與性質,解題的關鍵是熟知反比例函數(shù)在各象限的增減性.15、2【分析】作軸于D,軸于E,連接OC,如圖,利用反比例函數(shù)的性質得到點A與點B關于原點對稱,再根據(jù)等腰三角形的性質得,,接著證明∽,根據(jù)相似三角形的性質得,利用k的幾何意義得到,然后解絕對值方程可得到滿足條件的k的值.【詳解】解:作軸于D,軸于E,連接OC,如圖,過原點,點A與點B關于原點對稱,,為等腰三角形,,,,,,,,∽,,而,,即,而,.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)為常數(shù),的圖象是雙曲線,圖象上的點的橫縱坐標的積是定值k,即雙曲線是關于原點對稱的,兩個分支上的點也是關于原點對稱;在圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值也考查了等腰三角形的性質和相似三角形的判定與性質.16、1【分析】利用角角定理證明△BAD∽△BCA,然后利用相似三角形的性質得到,求得BC的長,從而使問題得解.【詳解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴.∵AB=6,BD=4,∴,∴BC=9,∴CD=BC-BD=9-4=1.【點睛】本題考查相似三角形的判定與性質,熟記判定方法準確找到相似三角形對應邊是本題的解題關鍵..17、20°<∠A<30°.【詳解】∵<cosA<sin70°,sin70°=cos20°,∴cos30°<cosA<cos20°,∴20°<∠A<30°.18、4或1【分析】要使直線l與⊙O相切,就要求CH與DH,要求這兩條線段的長只需求OH弦心距,為此連結OA,由直線l⊥OC,由垂徑定理得AH=BH,在Rt△AOH中,求OH即可.【詳解】連結OA∵直線l⊥OC,垂足為H,OC為半徑,∴由垂徑定理得AH=BH=AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得OH=,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直線l向左平移4cm時能與⊙O相切或向右平移1cm與⊙O相切.故答案為:4或1.【點睛】本題考查平移直線與與⊙O相切問題,關鍵是求弦心距OH,會利用垂徑定理解決AH,會用勾股定理求OH,掌握引輔助線,增加已知條件,把問題轉化為三角形形中解決.三、解答題(共78分)19、(1)詳見解析;(2)詳見解析;(3)N點的坐標為(0,﹣1);(4)D點坐標為(3,0).【解析】試題分析:(1)根據(jù)題中給出的損矩形的定義,從圖找出只有一組對角是直角的四邊形即可;(2)證明四邊形BADM四個頂點到BD的中點距離相等即可;(3)利用同弧所對的圓周角相等可得∠MAD=∠MBD,進而得到OA=ON,即可求得點N的坐標;(4)根據(jù)正方形的性質及損矩形含有的直角,利用勾股定理求解.(1)四邊形ABMD為損矩形;(2)取BD中點H,連結MH,AH∵四邊形OABC,BDEF是正方形∴△ABD,△BDM都是直角三角形∴HA=BDHM=BD∴HA=HB=HM=HD=BD∴損矩形ABMD一定有外接圓(3)∵損矩形ABMD一定有外接圓⊙H∴MAD=MBD∵四邊形BDEF是正方形∴MBD=45°∴MAD=45°∴OAN=45°∵OA=1∴ON=1∴N點的坐標為(0,-1)(4)延長AB交MG于點P,過點M作MQ⊥軸于點Q設MG=,則四邊形APMQ為正方形∴PM=AQ=-1∴OG=MQ=-1∵△MBP≌△MDQ∴DQ=BP=CG=-2∴MN2ND2MD2∵四邊形DMGN為損矩形∴∴∴=2.5或=1(舍去)∴OD=3∴D點坐標為(3,0).考點:本題考查的是確定圓的條件,正方形的性質點評:解答本題的關鍵是理解損矩形的只有一組對角是直角的性質,20、【分析】過P作PH⊥MN于H,構建直角三角形,設PH=x海里,分別在兩個直角三角形△PHN和△PHM中利用正切函數(shù)表示出NH長和MH長,列方程求解.【詳解】過P作PH⊥MN,垂足為H,設PH=x海里,在Rt△PHN,tan∠PNH=,∴tan45°=,∴NH=,在Rt△PHM中,tan∠PMH=,∴tan30°=,∴MH=,∵MN=30×2=60海里,∴,∴.答:“山東艦”與指揮塔之間的最近距離為海里.【點睛】本題考查解直角三角形的應用,解答此題的關鍵是構建直角三角形,找準線段之間的關系,利用銳角三角函數(shù)進行解答.21、(1)見解析;(2)1.【解析】試題分析:根據(jù)OC=OB得到∠BCO=∠B,根據(jù)弧相等得到∠B=∠D,從而得到答案;根據(jù)題意得出CE的長度,設半徑為r,則OC=r,OE=r-2,根據(jù)Rt△OCE的勾股定理得出半徑.試題解析:(1)證明:∵OC=OB,∴∠BCO=∠B∵,∴∠B=∠D,∴∠BCO=∠D.(2)解:∵AB是⊙O的直徑,CD⊥AB,∴CE=.在Rt△OCE中,OC2=CE2+OE2,設⊙O的半徑為r,則OC=r,OE=OA-AE=r-2,∴,解得:r=1,∴⊙O的半徑為1考點:圓的基本性質22、(1)y=x2﹣x+2;(2);(3)不存在點P,使得四邊形EHFP為平行四邊形,理由見解析.【分析】(1)根據(jù)題意可以得到C的坐標,然后根據(jù)拋物線過點A、C、D可以求得該拋物線的解析式;(2)根據(jù)對稱軸和圖形可以畫出相應的圖形,然后找到使得四邊形EAMN的周長的取得最小值時的點M和點N即可,然后求出直線MN的解析式,然后直線MN與x軸的交點即可解答本題;(3)根據(jù)題意作出合適的圖形,然后根據(jù)平行四邊形的性質可知EH=FP,而通過計算看EH和FP是否相等,即可解答本題.【詳解】解:(1)∵AE∥x軸,OE平分∠AOB,∴∠AEO=∠EOB=∠AOE,∴AO=AE,∵A(0,2),∴E(2,2),∴點C(4,2),設二次函數(shù)解析式為y=ax2+bx+2,∵C(4,2)和D(3,0)在該函數(shù)圖象上,∴,得,∴該拋物線的解析式為y=x2﹣x+2;(2)作點A關于x軸的對稱點A1,作點E關于直線BC的對稱點E1,連接A1E1,交x軸于點M,交線段BC于點N.根據(jù)對稱與最短路徑原理,此時,四邊形AMNE周長最小.易知A1(0,﹣2),E1(6,2).設直線A1E1的解析式為y=kx+b,,得,∴直線A1E1的解析式為.當y=0時,x=3,∴點M的坐標為(3,0).∴由勾股定理得AM=,ME1=,∴四邊形EAMN周長的最小值為AM+MN+NE+AE=AM+ME1+AE=;(3)不存在.理由:過點F作EH的平行線,交拋物線于點P.易得直線OE的解析式為y=x,∵拋物線的解析式為y=x2﹣x+2=,∴拋物線的頂點F的坐標為(2,﹣),設直線FP的解析式為y=x+b,將點F代入,得,∴直線FP的解析式為.,解得或,∴點P的坐標為(,),F(xiàn)P=×(﹣2)=,,解得,或,∵點H是直線y=x與拋物線左側的交點,∴點H的坐標為(,),∴OH=×=,易得,OE=2,EH=OE﹣OH=2﹣=,∵EH≠FP,∴點P不符合要求,∴不存在點P,使得四邊形EHFP為平行四邊形.【點睛】本題主要考察二次函數(shù)綜合題,解題關鍵是得到C的坐標,然后根據(jù)拋物線過點A、C、D求得拋物線的解析式.23、(1)等邊三角形,見解析;(2)見解析;(3)【解析】(1)根據(jù)旋轉的性質可以得出,即可證明出是等邊三角形;(2)繞點A順時針旋轉得到,根據(jù)的旋轉的性質得到,,相加即可得;(3)由(2)知,當C、P、M、N四點共線時,PA+PB+PC取到最小,由,,可得CN垂直平分AB,再利用直角三角形的邊角關系,從而求出PA+PB+PC的最小值.【詳解】(1)等邊三角形;繞A點順時針旋轉得到MA,,是等邊三角形.(2)繞點A順時針旋轉得到,,由(1)可知,.(3)由(2)知,當C、P、M、N四點共線時,PA+PB+PC取到最?。B接BN,由旋轉的性質可得:AB=AN,∠BAM=60°∴是等邊三角形;,,是AB的垂直平分線,垂足為點Q,,,,即的最小值為.【點睛】本題為旋轉綜合題,掌握旋轉的性質、等邊三角形的判定及性質及理解小華的思路是關鍵.24、(1)y=200﹣2x;(2)售價是68元/千克時,日銷售利潤最大,最大利潤是1元【分析】(1)根據(jù)售價每上漲1元,則每天少售出2千克即可列出函數(shù)關系式;(2)根據(jù)(1)所得關系式,銷售利潤=每千克的利潤×銷售量列出二次函數(shù)關系式,再求出最值即可.【詳解】解:(1)根據(jù)題意,得設豬肉進價為a元/千克,(60﹣a)×80=1600,解得a=40,y=80﹣2(x﹣60)=20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論