2023屆云南昆明市黃岡實驗學校高三第二次診斷性檢測數(shù)學試卷(含答案解析)_第1頁
2023屆云南昆明市黃岡實驗學校高三第二次診斷性檢測數(shù)學試卷(含答案解析)_第2頁
2023屆云南昆明市黃岡實驗學校高三第二次診斷性檢測數(shù)學試卷(含答案解析)_第3頁
2023屆云南昆明市黃岡實驗學校高三第二次診斷性檢測數(shù)學試卷(含答案解析)_第4頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產(chǎn)生的不同的6位數(shù)的個數(shù)為A.96 B.84 C.120 D.3602.a(chǎn)為正實數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.13.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.4.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數(shù)記為.則()A. B.C. D.5.設非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件6.已知函數(shù)是偶函數(shù),當時,函數(shù)單調遞減,設,,,則的大小關系為()A. B. C. D.7.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.8.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.9.函數(shù)的圖象大致是()A. B.C. D.10.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數(shù)的值為()A.1 B.2 C.-1 D.-211.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.12.已知,則下列不等式正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若函數(shù)有個不同的零點,則的取值范圍是___________.14.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實數(shù)的最大值是_____.15.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.16.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點,且滿足>1,求實數(shù)a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實數(shù)a的最大值.18.(12分)在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標方程;(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.19.(12分)已知橢圓與拋物線有共同的焦點,且離心率為,設分別是為橢圓的上下頂點(1)求橢圓的方程;(2)過點與軸不垂直的直線與橢圓交于不同的兩點,當弦的中點落在四邊形內(nèi)(含邊界)時,求直線的斜率的取值范圍.20.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.21.(12分)已知曲線:和:(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標系,且兩種坐標系中取相同的長度單位.(1)求曲線的直角坐標方程和的方程化為極坐標方程;(2)設與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.22.(10分)在△ABC中,分別為三個內(nèi)角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產(chǎn)生的不同的6位數(shù)的個數(shù)為.故選B.2.B【答案解析】

,選B.3.D【答案解析】

由題意得,再利用基本不等式即可求解.【題目詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【答案點睛】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.4.A【答案解析】分析:首先需要去分析交換后甲盒中的紅球的個數(shù),對應的事件有哪些結果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數(shù)就會出現(xiàn)三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數(shù)就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結果.5.C【答案解析】

利用數(shù)量積的定義可得,即可判斷出結論.【題目詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【答案點睛】本題主要考查平面向量數(shù)量積的應用,考查推理能力與計算能力,屬于基礎題.6.A【答案解析】

根據(jù)圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據(jù)自變量的大小關系得到函數(shù)值的大小關系.【題目詳解】為偶函數(shù)圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:【答案點睛】本題考查利用函數(shù)奇偶性、對稱性和單調性比較函數(shù)值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調性,通過自變量的大小關系求得結果.7.C【答案解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【題目詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【答案點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.8.D【答案解析】

做出函數(shù)的圖象,問題轉化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結合即可求解.【題目詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當直線經(jīng)過時,;當直線經(jīng)過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【答案點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關系轉化為兩個函數(shù)的交點是解題的關鍵,運用數(shù)形結合是解決函數(shù)零點問題的基本思想,屬于中檔題.9.A【答案解析】

根據(jù)復合函數(shù)的單調性,同增異減以及采用排除法,可得結果.【題目詳解】當時,,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【答案點睛】本題考查具體函數(shù)的大致圖象的判斷,關鍵在于對復合函數(shù)單調性的理解,記住常用的結論:增+增=增,增-減=增,減+減=減,復合函數(shù)單調性同增異減,屬中檔題.10.D【答案解析】

由可得,O在AB的中垂線上,結合圓的性質可知O在兩個圓心的連線上,從而可求.【題目詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【答案點睛】本題主要考查圓的性質應用,幾何性質的轉化是求解的捷徑.11.B【答案解析】

由題意畫出圖形,設球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【題目詳解】設球的半徑為,,,由,得.如圖:設三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【答案點睛】本題考查三棱錐的外接球、三棱錐的側面積、體積,基本不等式等基礎知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數(shù)學轉化思想方法與數(shù)形結合的解題思想方法,是中檔題.12.D【答案解析】

利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【題目詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【答案點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質,利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

作出函數(shù)的圖象及直線,如下圖所示,因為函數(shù)有個不同的零點,所以由圖象可知,,,所以.14.2【答案解析】

根據(jù)遞推公式可考慮分析,再累加求出關于關于參數(shù)的關系,根據(jù)表達式的取值分析出,再用數(shù)學歸納法證明滿足條件即可.【題目詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數(shù)均有.所以.當時,證明:對任意的正整數(shù)都有.當時,成立.假設當時結論成立,即,則,即結論對也成立.由數(shù)學歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2【答案點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結合參數(shù)的范圍問題進行分析.屬于難題.15.【答案解析】

設桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【題目詳解】設桶的底面半徑為,高為,則,故,圓通的造價為解法一:當且僅當,即時取等號.解法二:,則,令,即,解得,此函數(shù)在單調遞增;令,即,解得,此函數(shù)在上單調遞減;令,即,解得,即當時,圓桶的造價最低.所以故答案為:【答案點睛】本題考查了基本不等式的應用,注意驗證等號成立的條件,屬于基礎題.16.【答案解析】

先確定球心的位置,結合勾股定理可求球的半徑,進而可得球的面積.【題目詳解】取的外心為,設為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設,.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.【答案點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)m(t)=(2)a≤2-2.(3)a≤2-2.【答案解析】

(1)是研究在動區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數(shù)的極值點與所研究的區(qū)間的大小關系來進行求解.(2)注意到函數(shù)h(x)的圖像上任意不同兩點A,B連線的斜率總大于1,等價于h(x1)-h(huán)(x2)<x1-x2(x1<x2)恒成立,從而構造函數(shù)F(x)=h(x)-x在(0,+∞)上單調遞增,進而等價于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處理有解問題,先分離變量轉化為求對應函數(shù)的最值,得到a≤,再利用導數(shù)求函數(shù)M(x)=的最大值,這要用到二次求導,才可確定函數(shù)單調性,進而確定函數(shù)最值.【題目詳解】(1)f′(x)=1-,x>0,令f′(x)=0,則x=1.當t≥1時,f(x)在[t,t+1]上單調遞增,f(x)的最小值為f(t)=t-lnt;當0<t<1時,f(x)在區(qū)間(t,1)上為減函數(shù),在區(qū)間(1,t+1)上為增函數(shù),f(x)的最小值為f(1)=1.綜上,m(t)=(2)h(x)=x2-(a+1)x+lnx,不妨取0<x1<x2,則x1-x2<0,則由,可得h(x1)-h(huán)(x2)<x1-x2,變形得h(x1)-x1<h(x2)-x2恒成立.令F(x)=h(x)-x=x2-(a+2)x+lnx,x>0,則F(x)=x2-(a+2)x+lnx在(0,+∞)上單調遞增,故F′(x)=2x-(a+2)+≥0在(0,+∞)上恒成立,所以2x+≥a+2在(0,+∞)上恒成立.因為2x+≥2,當且僅當x=時取“=”,所以a≤2-2.(3)因為f(x)≥,所以a(x+1)≤2x2-xlnx.因為x∈(0,1],則x+1∈(1,2],所以?x∈(0,1],使得a≤成立.令M(x)=,則M′(x)=.令y=2x2+3x-lnx-1,則由y′==0可得x=或x=-1(舍).當x∈時,y′<0,則函數(shù)y=2x2+3x-lnx-1在上單調遞減;當x∈時,y′>0,則函數(shù)y=2x2+3x-lnx-1在上單調遞增.所以y≥ln4->0,所以M′(x)>0在x∈(0,1]時恒成立,所以M(x)在(0,1]上單調遞增.所以只需a≤M(1),即a≤1.所以實數(shù)a的最大值為1.【答案點睛】本題考查了函數(shù)與導數(shù)綜合問題,考查了學生綜合分析,轉化與劃歸,數(shù)學運算能力,屬于難題.18.(Ⅰ)(t為參數(shù)),;(Ⅱ)1.【答案解析】

(Ⅰ)直接由已知寫出直線l1的參數(shù)方程,設N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;(Ⅱ)將l1的參數(shù)方程代入C的直角坐標方程中,得到關于t的一元二次方程,再由參數(shù)t的幾何意義可得|AP|?|AQ|的值.【題目詳解】(Ⅰ)直線l1的參數(shù)方程為,(t為參數(shù))即(t為參數(shù)).設N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),則,即,即ρ=4cosθ,∴曲線C的直角坐標方程為x2-4x+y2=0(x≠0).(Ⅱ)將l1的參數(shù)方程代入C的直角坐標方程中,得,即,t1,t2為方程的兩個根,∴t1t2=-1,∴|AP|?|AQ|=|t1t2|=|-1|=1.【答案點睛】本題考查簡單曲線的極坐標方程,考查直角坐標方程與直角坐標方程的互化,訓練了直線參數(shù)方程中參數(shù)t的幾何意義的應用,是中檔題.19.(1)(2)或【答案解析】

(1)由已知條件得到方程組,解得即可;(2)由題意得直線的斜率存在,設直線方程為,聯(lián)立直線與橢圓方程,消元、列出韋達定理,由得到的范圍,設弦中點坐標為則,所以在軸上方,只需位于內(nèi)(含邊界)就可以,即滿足,得到不等式組,解得即可;【題目詳解】解:(1)由已知橢圓右焦點坐標為,離心率為,,,所以橢圓的標準方程為;(2)由題意得直線的斜率存在,設直線方程為聯(lián)立,消元整理得,,由,解得設弦中點坐標為,所以在軸上方,只需位于內(nèi)(含邊界)就可以,即滿足,即,解得或【答案點睛】本題考查了橢圓的定義標準方程及其性質,直線與橢圓的綜合應用,考查了推理能力與計算能力,屬于中檔題.20.(1)見解析;(2)【答案解析】

(1)過點作交于,連接,設,連接,由角平分線的性質,正方形的性質,三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識和線面的關系可證得平面,建立空間直角坐標系,求得兩個平面的法向量,根據(jù)二面角的向量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論