版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第28章銳角三角函數(shù)第28章銳角三角函數(shù)1問題為了綠化荒山,某地打算從位于山腳下的機井房沿著山坡鋪設(shè)水管,在山坡上修建一座揚水站,對坡面的綠地進行噴灌.現(xiàn)測得斜坡與水平面所成角的度數(shù)是30°,為使出水口的高度為35m,那么需要準(zhǔn)備多長的水管?這個問題可以歸結(jié)為,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB根據(jù)“在直角三角形中,30°角所對的邊等于斜邊的一半”,即可得AB=2BC=70m,也就是說,需要準(zhǔn)備70m長的水管.ABC
分析:情境探究問題為了綠化荒山,某地打算從位于山腳下的機井房沿著山坡鋪設(shè)2在上面的問題中,如果使出水口的高度為50m,那么需要準(zhǔn)備多長的水管?結(jié)論:在一個直角三角形中,如果一個銳角等于30°,那么不管三角形的大小如何,這個角的對邊與斜邊的比值都等于?思考ABC50m30mB'C'AB'=2B'
C'
=2×50=100在上面的問題中,如果使出水口的高度為50m,那么需要準(zhǔn)備多長3
在Rt△ABC中,∠C=90°,由于∠A=45°,所以Rt△ABC是等腰直角三角形,由勾股定理得因此
即在直角三角形中,當(dāng)一個銳角等于45°時,不管這個直角三角形的大小如何,這個角的對邊與斜邊的比都等于
如圖,任意畫一個Rt△ABC,使∠C=90°,∠A=45°,計算∠A的對邊與斜邊的比
,你能得出什么結(jié)論??思考ABC在Rt△ABC中,∠C=90°,由于∠A=45°,4綜上可知,在一個Rt△ABC中,∠C=90°,當(dāng)∠A=30°時,∠A的對邊與斜邊的比都等于,是一個固定值;當(dāng)∠A=45°時,∠A的對邊與斜邊的比都等于,也是一個固定值.
一般地,當(dāng)∠A
取其他一定度數(shù)的銳角時,它的對邊與斜邊的比是否也是一個固定值?結(jié)論問題綜上可知,在一個Rt△ABC中,∠C=90°,當(dāng)∠A=30°5
在圖中,由于∠C=∠C'=90°,∠A=∠A'=α,所以Rt△ABC∽Rt△A'B'C'
這就是說,在直角三角形中,當(dāng)銳角A的度數(shù)一定時,不管三角形的大小如何,∠A的對邊與斜邊的比也是一個固定值.任意畫Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,∠A=∠A'=α,那么與有什么關(guān)系.你能解釋一下嗎?探究ABCA'B'C'在圖中,由于∠C=∠C'=90°,∠A=∠A'=α,所6
如圖,在Rt△ABC中,∠C=90°,我們把銳角A的對邊與斜邊的比叫做∠A的正弦(sine),記住sinA
即例如,當(dāng)∠A=30°時,我們有當(dāng)∠A=45°時,我們有ABCcab對邊斜邊在圖中∠A的對邊記作a∠B的對邊記作b∠C的對邊記作c正弦函數(shù)如圖,在Rt△ABC中,∠C=90°,我們把銳角A的對邊7注意sinA是一個完整的符號,它表示∠A的正弦,記號里習(xí)慣省去角的符號“∠”;但是用數(shù)字或3個字母表示角時,不能省略。如:∠1的正弦表示為sin∠1,而不能是sin1.sinA沒有單位,它表示一個比值,即直角三角形中∠A的對邊與斜邊的比;sinA不表示“sin”乘以“A”。注意sinA是一個完整的符號,它表示∠A的正弦,記號里習(xí)慣省8例1如圖,在Rt△ABC中,∠C=90°,求sinA和sinB的值.解:(1)在Rt△ABC中,因此(2)在Rt△ABC中,因此ABCABC3413求sinA就是要確定∠A的對邊與斜邊的比;求sinB就是要確定∠B的對邊與斜邊的比例題示范5例1如圖,在Rt△ABC中,∠C=90°,求sinA和si9練一練1.判斷對錯:A10m6mBC1)
如圖(1)sinA=()
(2)sinB=()
(3)sinA=0.6m()
(4)SinB=0.8()√√××sinA是一個比值(注意比的順序),無單位;2)如圖,sinA=()
×練一練1.判斷對錯:A10m6mBC1)如圖(1)s102、在Rt△ABC中,銳角A的對邊和斜邊同時擴大
100倍,sinA的值()
A.擴大100倍B.縮小
C.不變D.不能確定C練一練3如圖ACB37300則sinA=______.122、在Rt△ABC中,銳角A的對邊和斜邊同時擴大C練一練3如114、在△ABC中,∠C=90°,BC=2,sinA=,則邊AC的長是()A.B.3C.D.
5、如圖,已知點P的坐標(biāo)是(a,b),則sinα等于(
)A.B.C.
BD4、在△ABC中,∠C=90°,BC=2,sinA=12
6、在Rt△ABC中,∠C=900
,sinA=,求sinB的值.6、在Rt△ABC中,∠C=900,sinA=13做一做
請各組分別度計算60度的銳角對邊與斜邊的比值你能發(fā)現(xiàn)什么規(guī)律嗎?做一做請各組分別度計算60度的銳角對邊與斜邊14規(guī)律(1)直角三角形中,銳角大小確定后,這個角的對邊與斜邊的比值隨之確定;(2)直角三角形中一個銳角的度數(shù)越大,它的對邊與斜邊的比值越大規(guī)律(1)直角三角形中,銳角大小確定后,這個角的(2)直角三15小結(jié)本節(jié)課你有什么收獲呢?小結(jié)本節(jié)課你有什么收獲呢?16回味無窮小結(jié)拓展1.銳角三角函數(shù)定義:2.sinA是∠A的函數(shù).ABC∠A的對邊┌斜邊斜邊∠A的對邊sinA=Sin300=sin45°=回味無窮小結(jié)拓展1.銳角三角函數(shù)定義:2.si17第28章銳角三角函數(shù)第28章銳角三角函數(shù)18問題為了綠化荒山,某地打算從位于山腳下的機井房沿著山坡鋪設(shè)水管,在山坡上修建一座揚水站,對坡面的綠地進行噴灌.現(xiàn)測得斜坡與水平面所成角的度數(shù)是30°,為使出水口的高度為35m,那么需要準(zhǔn)備多長的水管?這個問題可以歸結(jié)為,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB根據(jù)“在直角三角形中,30°角所對的邊等于斜邊的一半”,即可得AB=2BC=70m,也就是說,需要準(zhǔn)備70m長的水管.ABC
分析:情境探究問題為了綠化荒山,某地打算從位于山腳下的機井房沿著山坡鋪設(shè)19在上面的問題中,如果使出水口的高度為50m,那么需要準(zhǔn)備多長的水管?結(jié)論:在一個直角三角形中,如果一個銳角等于30°,那么不管三角形的大小如何,這個角的對邊與斜邊的比值都等于?思考ABC50m30mB'C'AB'=2B'
C'
=2×50=100在上面的問題中,如果使出水口的高度為50m,那么需要準(zhǔn)備多長20
在Rt△ABC中,∠C=90°,由于∠A=45°,所以Rt△ABC是等腰直角三角形,由勾股定理得因此
即在直角三角形中,當(dāng)一個銳角等于45°時,不管這個直角三角形的大小如何,這個角的對邊與斜邊的比都等于
如圖,任意畫一個Rt△ABC,使∠C=90°,∠A=45°,計算∠A的對邊與斜邊的比
,你能得出什么結(jié)論??思考ABC在Rt△ABC中,∠C=90°,由于∠A=45°,21綜上可知,在一個Rt△ABC中,∠C=90°,當(dāng)∠A=30°時,∠A的對邊與斜邊的比都等于,是一個固定值;當(dāng)∠A=45°時,∠A的對邊與斜邊的比都等于,也是一個固定值.
一般地,當(dāng)∠A
取其他一定度數(shù)的銳角時,它的對邊與斜邊的比是否也是一個固定值?結(jié)論問題綜上可知,在一個Rt△ABC中,∠C=90°,當(dāng)∠A=30°22
在圖中,由于∠C=∠C'=90°,∠A=∠A'=α,所以Rt△ABC∽Rt△A'B'C'
這就是說,在直角三角形中,當(dāng)銳角A的度數(shù)一定時,不管三角形的大小如何,∠A的對邊與斜邊的比也是一個固定值.任意畫Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,∠A=∠A'=α,那么與有什么關(guān)系.你能解釋一下嗎?探究ABCA'B'C'在圖中,由于∠C=∠C'=90°,∠A=∠A'=α,所23
如圖,在Rt△ABC中,∠C=90°,我們把銳角A的對邊與斜邊的比叫做∠A的正弦(sine),記住sinA
即例如,當(dāng)∠A=30°時,我們有當(dāng)∠A=45°時,我們有ABCcab對邊斜邊在圖中∠A的對邊記作a∠B的對邊記作b∠C的對邊記作c正弦函數(shù)如圖,在Rt△ABC中,∠C=90°,我們把銳角A的對邊24注意sinA是一個完整的符號,它表示∠A的正弦,記號里習(xí)慣省去角的符號“∠”;但是用數(shù)字或3個字母表示角時,不能省略。如:∠1的正弦表示為sin∠1,而不能是sin1.sinA沒有單位,它表示一個比值,即直角三角形中∠A的對邊與斜邊的比;sinA不表示“sin”乘以“A”。注意sinA是一個完整的符號,它表示∠A的正弦,記號里習(xí)慣省25例1如圖,在Rt△ABC中,∠C=90°,求sinA和sinB的值.解:(1)在Rt△ABC中,因此(2)在Rt△ABC中,因此ABCABC3413求sinA就是要確定∠A的對邊與斜邊的比;求sinB就是要確定∠B的對邊與斜邊的比例題示范5例1如圖,在Rt△ABC中,∠C=90°,求sinA和si26練一練1.判斷對錯:A10m6mBC1)
如圖(1)sinA=()
(2)sinB=()
(3)sinA=0.6m()
(4)SinB=0.8()√√××sinA是一個比值(注意比的順序),無單位;2)如圖,sinA=()
×練一練1.判斷對錯:A10m6mBC1)如圖(1)s272、在Rt△ABC中,銳角A的對邊和斜邊同時擴大
100倍,sinA的值()
A.擴大100倍B.縮小
C.不變D.不能確定C練一練3如圖ACB37300則sinA=______.122、在Rt△ABC中,銳角A的對邊和斜邊同時擴大C練一練3如284、在△ABC中,∠C=90°,BC=2,sinA=,則邊AC的長是(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)合集【人員管理篇】十篇
- 單位管理制度呈現(xiàn)大合集【人力資源管理篇】
- 3D視覺傳感器公司企業(yè)文化管理方案
- 《病歷標(biāo)準(zhǔn)性書寫》課件
- 《電子商務(wù)復(fù)習(xí)》課件
- 2024年大學(xué)生暑期個人社會實踐總結(jié)
- 中小學(xué)開學(xué)第一課373
- 電商行業(yè)行政后勤工作總結(jié)
- 七夕之愛 讓企業(yè)生輝
- 2023-2024年項目安全培訓(xùn)考試題鞏固
- 雨雪天氣安全教育PPT
- 深基坑支護專項施工方案(咬合樁)
- 勞務(wù)派遣服務(wù)外包技術(shù)方案
- 采購管理實務(wù)全套教學(xué)課件
- 極致物業(yè)管理系統(tǒng)收費管理業(yè)務(wù)操作
- GB∕T 29639-2020 生產(chǎn)經(jīng)營單位生產(chǎn)安全事故應(yīng)急預(yù)案編制導(dǎo)則
- 貴州省工傷保險待遇申領(lǐng)授權(quán)委托書
- 媒介融合(ppt)課件
- 液壓系統(tǒng)中油管尺寸的選擇
- 視頻監(jiān)控臺賬參考模板
- 初一初三國家體育鍛煉標(biāo)準(zhǔn)評分表
評論
0/150
提交評論