江西省上饒市第六中學2023學年中考數學最后沖刺濃縮精華卷含解析_第1頁
江西省上饒市第六中學2023學年中考數學最后沖刺濃縮精華卷含解析_第2頁
江西省上饒市第六中學2023學年中考數學最后沖刺濃縮精華卷含解析_第3頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省上饒市第六中學2023學年中考數學最后沖刺濃縮精華卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.102.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm3.如圖,不等式組的解集在數軸上表示正確的是()A. B.C. D.4.下列各式中的變形,錯誤的是(()A.2-3x=-23x B.-b5.下列函數中,二次函數是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=6.正比例函數y=2kx的圖象如圖所示,則y=(k-2)x+1-k的圖象大致是()A.B.C.D.7.如圖,右側立體圖形的俯視圖是()A.B.C.D.8.如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm29.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.3210.如圖,邊長為1的小正方形構成的網格中,半徑為1的⊙O的圓心O在格點上,則∠BED的正切值等于()A. B. C.2 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.函數y=中自變量x的取值范圍是_____.12.已知線段a=4,b=1,如果線段c是線段a、b的比例中項,那么c=_____.13.如圖,在矩形ABCD中,AB=8,AD=6,點E為AB上一點,AE=2,點F在AD上,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上時,折痕EF的長為_____.14.分解因式:x2-9=_▲.15.如圖所示,扇形OMN的圓心角為45°,正方形A1B1C1A2的邊長為2,頂點A1,A2在線段OM上,頂點B1在弧MN上,頂點C1在線段ON上,在邊A2C1上取點B2,以A2B2為邊長繼續(xù)作正方形A2B2C2A3,使得點C2在線段ON上,點A3在線段OM上,……,依次規(guī)律,繼續(xù)作正方形,則A2018M=__________.16.如圖,在△ABC中,∠C=40°,CA=CB,則△ABC的外角∠ABD=°.三、解答題(共8題,共72分)17.(8分)如圖二次函數的圖象與軸交于點和兩點,與軸交于點,點、是二次函數圖象上的一對對稱點,一次函數的圖象經過、求二次函數的解析式;寫出使一次函數值大于二次函數值的的取值范圍;若直線與軸的交點為點,連結、,求的面積;18.(8分)計算:2sin30°﹣|1﹣|+()﹣119.(8分)計算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣120.(8分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.21.(8分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉90°得線段PQ.(1)當點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大?。?3)在點P運動中,當以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結果.22.(10分)如圖,在平面直角坐標系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以OA,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標為,直線OB的函數表達式為;(2)記△OMP的面積為S,求S與t的函數關系式;并求t為何值時,S有最大值,并求出最大值.23.(12分)(14分)如圖,在平面直角坐標系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點為A,與x軸的交點分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點E(t,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q.(1)求拋物線的解析式;(2)當0<t≤8時,求△APC面積的最大值;(3)當t>2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.24.我市正在創(chuàng)建“全國文明城市”,某校擬舉辦“創(chuàng)文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.A、B兩種獎品每件各多少元?現要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、C【答案解析】

由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【題目詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.【答案點睛】本題主要考查切線的性質,利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關鍵.2、C【答案解析】

利用扇形的弧長公式可得扇形的弧長;讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【題目詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個圓錐形筒的高為(cm).故選C.【答案點睛】此題考查了圓錐的計算,用到的知識點為:圓錐側面展開圖的弧長=;圓錐的底面周長等于側面展開圖的弧長;圓錐的底面半徑,母線長,高組成以母線長為斜邊的直角三角形.3、B【答案解析】

首先分別解出兩個不等式,再確定不等式組的解集,然后在數軸上表示即可.【題目詳解】解:解第一個不等式得:x>-1;解第二個不等式得:x≤1,在數軸上表示,故選B.【答案點睛】此題主要考查了解一元一次不等式組,以及在數軸上表示解集,把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<“>”要用空心圓點表示.4、D【答案解析】

根據分式的分子分母都乘以(或除以)同一個不為零的數(整式),分式的值不變,可得答案.【題目詳解】A、2-3B、分子、分母同時乘以﹣1,分式的值不發(fā)生變化,故B正確;C、分子、分母同時乘以3,分式的值不發(fā)生變化,故C正確;D、yx≠y故選:D.【答案點睛】本題考查了分式的基本性質,分式的分子分母都乘以(或除以)同一個不為零的數(整式),分式的值不變.5、B【答案解析】A.y=-4x+5是一次函數,故此選項錯誤;B.

y=x(2x-3)=2x2-3x,是二次函數,故此選項正確;C.

y=(x+4)2?x2=8x+16,為一次函數,故此選項錯誤;D.

y=是組合函數,故此選項錯誤.故選B.6、B【答案解析】測試卷解析:由圖象可知,正比函數y=2kx的圖象經過二、四象限,∴2k<0,得k<0,∴k?2<0,1?k>0,∴函數y=(k?2)x+1?k圖象經過一、二、四象限,故選B.7、A【答案解析】測試卷分析:從上邊看立體圖形得到俯視圖即可得右側立體圖形的俯視圖是,故選A.考點:簡單組合體的三視圖.8、D【答案解析】

標注字母,根據兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據相似三角形對應邊成比例求出,即,設BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積計算即可得解.【題目詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.【答案點睛】本題考查根據相似三角形的性質求出直角三角形的兩直角邊,利用紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關鍵.9、B【答案解析】

根據題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【題目詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【答案點睛】本題考查的知識點是三角形中位線定理,解題的關鍵是熟練的掌握三角形中位線定理.10、D【答案解析】

根據同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結合圖形根據正切的定義進行求解即可得.【題目詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【答案點睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≥﹣且x≠1.【答案解析】

根據分式有意義的條件、二次根式有意義的條件列式計算.【題目詳解】由題意得,2x+3≥0,x-1≠0,解得,x≥-且x≠1,故答案為:x≥-且x≠1.【答案點睛】本題考查的是函數自變量的取值范圍,①當表達式的分母不含有自變量時,自變量取全體實數.②當表達式的分母中含有自變量時,自變量取值要使分母不為零.③當函數的表達式是偶次根式時,自變量的取值范圍必須使被開方數不小于零.12、1【答案解析】

根據比例中項的定義,列出比例式即可得出中項,注意線段不能為負.【題目詳解】根據比例中項的概念結合比例的基本性質,得:比例中項的平方等于兩條線段的乘積.則c1=4×1,c=±1,(線段是正數,負值舍去),故c=1.故答案為1.【答案點睛】本題考查了比例線段;理解比例中項的概念,這里注意線段不能是負數.13、4或4.【答案解析】

①當AF<AD時,由折疊的性質得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過E作EH⊥MN于H,由矩形的性質得到MH=AE=2,根據勾股定理得到A′H=,根據勾股定理列方程即可得到結論;②當AF>AD時,由折疊的性質得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過A′作HG∥BC交AB于G,交CD于H,根據矩形的性質得到DH=AG,HG=AD=6,根據勾股定理即可得到結論.【題目詳解】①當AF<AD時,如圖1,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設MN是BC的垂直平分線,則AM=AD=3,過E作EH⊥MN于H,則四邊形AEHM是矩形,∴MH=AE=2,∵A′H=,∴A′M=,∵MF2+A′M2=A′F2,∴(3-AF)2+()2=AF2,∴AF=2,∴EF==4;②當AF>AD時,如圖2,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設MN是BC的垂直平分線,過A′作HG∥BC交AB于G,交CD于H,則四邊形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=HG=3,∴EG==,∴DH=AG=AE+EG=3,∴A′F==6,∴EF==4,綜上所述,折痕EF的長為4或4,故答案為:4或4.【答案點睛】本題考查了翻折變換-折疊問題,矩形的性質和判定,勾股定理,正確的作出輔助線是解題的關鍵.14、(x+3)(x-3)【答案解析】

x2-9=(x+3)(x-3),故答案為(x+3)(x-3).15、.【答案解析】

探究規(guī)律,利用規(guī)律即可解決問題.【題目詳解】∵∠MON=45°,∴△C2B2C2為等腰直角三角形,∴C2B2=B2C2=A2B2.∵正方形A2B2C2A2的邊長為2,∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,同理,可得出:OAn=An-2An=An-2An-2=,∴OA2028=A2028A2027=,∴A2028M=2-.故答案為2-.【答案點睛】本題考查規(guī)律型問題,解題的關鍵是學會探究規(guī)律的方法,學會利用規(guī)律解決問題,屬于中考??碱}型.16、110【答案解析】測試卷解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考點:等腰三角形的性質、三角形外角的性質點評:本題主要考查了等腰三角形的性質、三角形外角的性質.等腰三角形的兩個底角相等;三角形的外角等于與它不相鄰的兩個內角之和.三、解答題(共8題,共72分)17、(1);(2)或;(3)1.【答案解析】

(1)直接將已知點代入函數解析式求出即可;(2)利用函數圖象結合交點坐標得出使一次函數值大于二次函數值的x的取值范圍;(3)分別得出EO,AB的長,進而得出面積.【題目詳解】(1)∵二次函數與軸的交點為和∴設二次函數的解析式為:∵在拋物線上,∴3=a(0+3)(0-1),解得a=-1,所以解析式為:;(2)=?x2?2x+3,∴二次函數的對稱軸為直線;∵點、是二次函數圖象上的一對對稱點;∴;∴使一次函數大于二次函數的的取值范圍為或;(3)設直線BD:y=mx+n,代入B(1,0),D(?2,3)得,解得:,故直線BD的解析式為:y=?x+1,把x=0代入得,y=3,所以E(0,1),∴OE=1,又∵AB=1,∴S△ADE=×1×3?×1×1=1.【答案點睛】此題主要考查了待定系數法求一次函數和二次函數解析式,利用數形結合得出是解題關鍵.18、4﹣【答案解析】

原式利用絕對值的代數意義,特殊角的三角函數值,負整數指數冪的法則計算即可.【題目詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【答案點睛】本題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.19、1【答案解析】

本題涉及絕對值、特殊角的三角函數值、負指數冪、二次根式化簡、乘方5個考點,先針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果即可.【題目詳解】解:原式=2﹣+2×﹣3+1=1.【答案點睛】本題考查實數的綜合運算能力,是各地中考題中常見的計算題型,解決此類題目的關鍵是熟練掌握絕對值、特殊角的三角函數值、負指數冪、二次根式化簡、乘方等考點的運算.20、,【答案解析】原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除以一個數等于乘以這個數的倒數將除法運算化為乘法運算,約分得到最簡結果,利用-1的偶次冪為1及特殊角的三角函數值求出a的值,代入計算即可求出值.解:原式=,當,原式=.“點睛”此題考查了分式的化簡求值,分式的加減運算關鍵是通分,通分的關鍵是找最簡公分母;分式的乘除運算關鍵是約分,約分的關鍵是找公因式.21、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【答案解析】

(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質,在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當點Q運動到點E時,CQ最長為7,再由垂線段最短,應用面積法求CQ最小值.【題目詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點Q做QF⊥BD于點F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當點Q在BD的右下方時,同理可得∠PQ0Q=45°,此時∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當點Q直線BD上方,當以點Q為圓心,BP為半徑的圓與直線BD相切時過點Q做QF⊥BD于點F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當點Q位于BD下方時,可求得BP=故BP的長為或(4)由(2)可知∠QQ0D=45°則如圖,點Q在過點Q0,且與BD夾角為45°的線段EF上運動,當點P與點B重合時,點Q與點F重合,此時,CF=4﹣3=1當點P與點D重合時,點Q與點E重合,此時,CE=4+3=7∴EF===5過點C做CH⊥EF于點H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【答案點睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質以及三角形相似的相關知識,應用了分類討論和數形結合的數學思想.22、(1),;(2),1,1.【答案解析】

(1)根據四邊形OABC為矩形即可求出點B坐標,設直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點的坐標為,表達出△OMP的面積即可,利用二次函數的性質求出最大值.【題目詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點B,設直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點的坐標為,∴當時,有最大值1.【答案點睛】本題考查了二次函數與幾何動態(tài)問題,解題的關鍵是根據題意表達出點的坐標,利用幾何知識列出函數關系式.23、(1)y=14x2-2x+3【答案解析】測試卷分析:(1)首先利用根與系數的關系得出:x1+x2=8測試卷解析:解:(1)由題意知x1、x2是方程mx2﹣8mx+4m+2=0的兩根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)則4m﹣16m+4m+2=0,解得:m=,∴該拋物線解析式為:y=;.(2)可求得A(0,3)設直線AC的解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論