版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年天津市和平區(qū)匯文中學(xué)中考考前最后一卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.某籃球運(yùn)動(dòng)員在連續(xù)7場(chǎng)比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分2.計(jì)算的值為()A. B.-4 C. D.-23.如圖1,在等邊△ABC中,D是BC的中點(diǎn),P為AB邊上的一個(gè)動(dòng)點(diǎn),設(shè)AP=x,圖1中線(xiàn)段DP的長(zhǎng)為y,若表示y與x的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為()A.4 B. C.12 D.4.觀察下列圖案,是軸對(duì)稱(chēng)而不是中心對(duì)稱(chēng)的是()A. B. C. D.5.已知2是關(guān)于x的方程x2-2mx+3m=0的一個(gè)根,并且這個(gè)方程的兩個(gè)根恰好是等腰三角形ABC的兩條邊長(zhǎng),則三角形ABC的周長(zhǎng)為()A.10 B.14 C.10或14 D.8或106.將拋物線(xiàn)向左平移2個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度,得到的拋物線(xiàn)的函數(shù)表達(dá)式為()A.B.C.D.7.通州區(qū)大運(yùn)河森林公園占地面積10700畝,是北京規(guī)模最大的濱河森林公園,將10700用科學(xué)記數(shù)法表示為()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1048.如圖,分別以等邊三角形ABC的三個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑畫(huà)弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.29.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.10.下列四個(gè)多項(xiàng)式,能因式分解的是()A.a(chǎn)-1 B.a(chǎn)2+1C.x2-4y D.x2-6x+9二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為_(kāi)_.12.如圖,Rt△ABC中,AC=3,BC=4,∠ACB=90°,P為AB上一點(diǎn),且AP=2BP,若點(diǎn)A繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,則點(diǎn)P隨之運(yùn)動(dòng)的路徑長(zhǎng)是_________13.如圖,將矩形ABCD沿GH對(duì)折,點(diǎn)C落在Q處,點(diǎn)D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長(zhǎng)是_____cm.14.如圖,△ABC中,AB=5,AC=6,將△ABC翻折,使得點(diǎn)A落到邊BC上的點(diǎn)A′處,折痕分別交邊AB、AC于點(diǎn)E,點(diǎn)F,如果A′F∥AB,那么BE=_____.15.若a:b=1:3,b:c=2:5,則a:c=_____.16.如圖,點(diǎn)P的坐標(biāo)為(2,2),點(diǎn)A,B分別在x軸,y軸的正半軸上運(yùn)動(dòng),且∠APB=90°.下列結(jié)論:①PA=PB;②當(dāng)OA=OB時(shí)四邊形OAPB是正方形;③四邊形OAPB的面積和周長(zhǎng)都是定值;④連接OP,AB,則AB>OP.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為;②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為;當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說(shuō)明理由.18.(8分)(1)計(jì)算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化簡(jiǎn),再求值?(a2﹣b2),其中a=,b=﹣2.19.(8分)華聯(lián)超市準(zhǔn)備代銷(xiāo)一款運(yùn)動(dòng)鞋,每雙的成本是170元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是200元時(shí),每天的銷(xiāo)售量是40雙,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5雙,設(shè)每雙降低x元(x為正整數(shù)),每天的銷(xiāo)售利潤(rùn)為y元.求y與x的函數(shù)關(guān)系式;每雙運(yùn)動(dòng)鞋的售價(jià)定為多少元時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少?20.(8分)如圖,△ABC中AB=AC,請(qǐng)你利用尺規(guī)在BC邊上求一點(diǎn)P,使△ABC~△PAC不寫(xiě)畫(huà)法,(保留作圖痕跡).21.(8分)如圖,在⊿中,,于,.⑴.求的長(zhǎng);⑵.求的長(zhǎng).22.(10分)如圖,已知Rt△ABC中,∠C=90°,D為BC的中點(diǎn),以AC為直徑的⊙O交AB于點(diǎn)E.(1)求證:DE是⊙O的切線(xiàn);(2)若AE:EB=1:2,BC=6,求⊙O的半徑.23.(12分)如圖,平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,3),點(diǎn)B(,0),連接AB,若對(duì)于平面內(nèi)一點(diǎn)C,當(dāng)△ABC是以AB為腰的等腰三角形時(shí),稱(chēng)點(diǎn)C是線(xiàn)段AB的“等長(zhǎng)點(diǎn)”.(1)在點(diǎn)C1(﹣2,3+2),點(diǎn)C2(0,﹣2),點(diǎn)C3(3+,﹣)中,線(xiàn)段AB的“等長(zhǎng)點(diǎn)”是點(diǎn)________;(2)若點(diǎn)D(m,n)是線(xiàn)段AB的“等長(zhǎng)點(diǎn)”,且∠DAB=60°,求點(diǎn)D的坐標(biāo);(3)若直線(xiàn)y=kx+3k上至少存在一個(gè)線(xiàn)段AB的“等長(zhǎng)點(diǎn)”,求k的取值范圍.24.將如圖所示的牌面數(shù)字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上.從中隨機(jī)抽出一張牌,牌面數(shù)字是偶數(shù)的概率是_____;先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個(gè)位上的數(shù)字,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求組成的兩位數(shù)恰好是4的倍數(shù)的概率.
2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題(共10小題,每小題3分,共30分)1、D【答案解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè);找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點(diǎn)睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對(duì)這個(gè)概念掌握不清楚,計(jì)算方法不明確而誤選其它選項(xiàng),注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來(lái)確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求,如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù).2、C【答案解析】
根據(jù)二次根式的運(yùn)算法則即可求出答案.【題目詳解】原式=-3=-2,故選C.【答案點(diǎn)睛】本題考查二次根式的運(yùn)算,解題的關(guān)鍵是熟練運(yùn)用二次根式的運(yùn)算法則,本題屬于基礎(chǔ)題型.3、D【答案解析】分析:由圖1、圖2結(jié)合題意可知,當(dāng)DP⊥AB時(shí),DP最短,由此可得DP最短=y最小=,這樣如圖3,過(guò)點(diǎn)P作PD⊥AB于點(diǎn)P,連接AD,結(jié)合△ABC是等邊三角形和點(diǎn)D是BC邊的中點(diǎn)進(jìn)行分析解答即可.詳解:由題意可知:當(dāng)DP⊥AB時(shí),DP最短,由此可得DP最短=y最小=,如圖3,過(guò)點(diǎn)P作PD⊥AB于點(diǎn)P,連接AD,∵△ABC是等邊三角形,點(diǎn)D是BC邊上的中點(diǎn),∴∠ABC=60°,AD⊥BC,∵DP⊥AB于點(diǎn)P,此時(shí)DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故選D.點(diǎn)睛:“讀懂題意,知道當(dāng)DP⊥AB于點(diǎn)P時(shí),DP最短=”是解答本題的關(guān)鍵.4、A【答案解析】測(cè)試卷解析:測(cè)試卷解析:根據(jù)軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形的概念進(jìn)行判斷可得:A、是軸對(duì)稱(chēng)圖形,不是中心對(duì)稱(chēng)圖形,故本選項(xiàng)符合題意;B、不是軸對(duì)稱(chēng)圖形,是中心對(duì)稱(chēng)圖形,故本選項(xiàng)不符合題意;C、不是軸對(duì)稱(chēng)圖形,是中心對(duì)稱(chēng)圖形,故本選項(xiàng)不符合題意;D、是軸對(duì)稱(chēng)圖形,也是中心對(duì)稱(chēng)圖形,故本選項(xiàng)不符合題意.故選A.點(diǎn)睛:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱(chēng)圖形.這個(gè)旋轉(zhuǎn)點(diǎn),就叫做對(duì)稱(chēng)中心.5、B【答案解析】測(cè)試卷分析:∵2是關(guān)于x的方程x2﹣2mx+3m=0的一個(gè)根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①當(dāng)1是腰時(shí),2是底邊,此時(shí)周長(zhǎng)=1+1+2=2;②當(dāng)1是底邊時(shí),2是腰,2+2<1,不能構(gòu)成三角形.所以它的周長(zhǎng)是2.考點(diǎn):解一元二次方程-因式分解法;一元二次方程的解;三角形三邊關(guān)系;等腰三角形的性質(zhì).6、A【答案解析】
先確定拋物線(xiàn)y=x2的頂點(diǎn)坐標(biāo)為(0,0),再根據(jù)點(diǎn)平移的規(guī)律得到點(diǎn)(0,0)平移后所得對(duì)應(yīng)點(diǎn)的坐標(biāo)為(-2,-1),然后根據(jù)頂點(diǎn)式寫(xiě)出平移后的拋物線(xiàn)解析式.【題目詳解】拋物線(xiàn)y=x2的頂點(diǎn)坐標(biāo)為(0,0),把點(diǎn)(0,0)向左平移1個(gè)單位,再向下平移2個(gè)單位長(zhǎng)度所得對(duì)應(yīng)點(diǎn)的坐標(biāo)為(-2,-1),所以平移后的拋物線(xiàn)解析式為y=(x+2)2-1.
故選A.7、D【答案解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【題目詳解】解:10700=1.07×104,
故選:D.【答案點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.8、D【答案解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個(gè)等邊三角形的面積,分別求出即可.【題目詳解】過(guò)A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【答案點(diǎn)睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計(jì)算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個(gè)等邊三角形的面積是解此題的關(guān)鍵.9、A【答案解析】∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
設(shè)CD=1,CF=x,則CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
解得x=,
∴sin∠BED=sin∠CDF=.
故選:A.10、D【答案解析】測(cè)試卷分析:利用平方差公式及完全平方公式的結(jié)構(gòu)特征判斷即可.測(cè)試卷解析:x2-6x+9=(x-3)2.故選D.考點(diǎn):2.因式分解-運(yùn)用公式法;2.因式分解-提公因式法.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(-2,7).【答案解析】
解:過(guò)點(diǎn)D作DF⊥x軸于點(diǎn)F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點(diǎn)A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點(diǎn)D的坐標(biāo)為:(﹣7,2),∴反比例函數(shù)的解析式為:y=﹣①,點(diǎn)C的坐標(biāo)為:(﹣4,8).設(shè)直線(xiàn)BC的解析式為:y=kx+b,則解得:∴直線(xiàn)BC的解析式為:y=﹣x+6②,聯(lián)立①②得:或(舍去),∴點(diǎn)E的坐標(biāo)為:(﹣2,7).故答案為(﹣2,7).12、π【答案解析】
作PD⊥BC,則點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)是以點(diǎn)D為圓心,以PD為半徑,圓心角為60°的一段圓弧,根據(jù)相似三角形的判定與性質(zhì)求出PD的長(zhǎng),然后根據(jù)弧長(zhǎng)公式求解即可.【題目詳解】作PD⊥BC,則PD∥AC,∴△PBD~△ABC,∴PDAC∵AC=3,BC=4,∴AB=32∵AP=2BP,∴BP=13∴PD=5∴點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)=60π×1180故答案為:π3【答案點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),弧長(zhǎng)的計(jì)算,根據(jù)相似三角形的判定與性質(zhì)求出PD的長(zhǎng)是解答本題的關(guān)鍵.13、2【答案解析】測(cè)試卷分析:BE=AB-AE=2.設(shè)AH=x,則DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考點(diǎn):1折疊問(wèn)題;2勾股定理;1相似三角形.14、【答案解析】
設(shè)BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依據(jù)△A'CF∽△BCA,可得,即=,進(jìn)而得到BE=.【題目詳解】解:如圖,由折疊可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折疊可得,AF=A'F,設(shè)BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴,即=,解得x=,∴BE=,故答案為:.【答案點(diǎn)睛】本題主要考查了折疊問(wèn)題以及相似三角形的判定與性質(zhì)的運(yùn)用,折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),折疊前后圖形的形狀和大小不變,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.15、2∶1【答案解析】分析:已知a、b兩數(shù)的比為1:3,根據(jù)比的基本性質(zhì),a、b兩數(shù)的比1:3=(1×2):(3×2)=2:6;而b、c的比為:2:5=(2×3):(5×3)=6:1;,所以a、c兩數(shù)的比為2:1.詳解:a:b=1:3=(1×2):(3×2)=2:6;
b:c=2:5=(2×3):(5×3)=6:1;,
所以a:c=2:1;
故答案為2:1.點(diǎn)睛:本題主要考查比的基本性質(zhì)的實(shí)際應(yīng)用,如果已知甲乙、乙丙兩數(shù)的比,那么可以根據(jù)比的基本性質(zhì)求出任意兩數(shù)的比.16、①②【答案解析】
過(guò)P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對(duì)①進(jìn)行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當(dāng)當(dāng)OA=OB時(shí),OA=OB=1,然后可對(duì)②作出判斷,由△APM≌△BPN可對(duì)四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據(jù)AP和PB的長(zhǎng)度變化情況可對(duì)四邊形OAPB的周長(zhǎng)作出判斷,求得AB的最大值以及OP的長(zhǎng)度可對(duì)④作出判斷.【題目詳解】過(guò)P作PM⊥y軸于M,PN⊥x軸于N
∵P(1,1),
∴PN=PM=1.
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPA=∠APB=90°,
∴∠MPA=∠NPB.
∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
∴△MPA≌△NPB,
∴PA=PB,故①正確.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
當(dāng)OA=OB時(shí),OA=OB=1,則點(diǎn)A、B分別與點(diǎn)M、N重合,此時(shí)四邊形OAPB是正方形,故②正確.
∵△MPA≌△NPB,
∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.
∵OA+OB=2,PA=PB,且PA和PB的長(zhǎng)度會(huì)不斷的變化,故周長(zhǎng)不是定值,故③錯(cuò)誤.
,∵∠AOB+∠APB=180°,
∴點(diǎn)A、O、B、P共圓,且AB為直徑,所以
AB≥OP,故④錯(cuò)誤.
故答案為:①②.【答案點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),正方形的性質(zhì)的應(yīng)用,關(guān)鍵是推出AM=BN和推出OA+OB=OM+ON三、解答題(共8題,共72分)17、解:(1)①.②或.(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似.理由見(jiàn)解析.【答案解析】
(1)①當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形;
②若△CEF與△ABC相似,分兩種情況:①若CE:CF=3:4,如圖1所示,此時(shí)EF∥AB,CD為AB邊上的高;②若CF:CE=3:4,如圖2所示.由相似三角形角之間的關(guān)系,可以推出∠A=∠ECD與∠B=∠FCD,從而得到CD=AD=BD,即D點(diǎn)為AB的中點(diǎn);
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個(gè)三角形相似.【題目詳解】(1)若△CEF與△ABC相似.①當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形,如答圖1所示,此時(shí)D為AB邊中點(diǎn),AD=AC=.②當(dāng)AC=3,BC=4時(shí),有兩種情況:(I)若CE:CF=3:4,如答圖2所示,∵CE:CF=AC:BC,∴EF∥BC.由折疊性質(zhì)可知,CD⊥EF,∴CD⊥AB,即此時(shí)CD為AB邊上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=.∴AD=AC?cosA=3×=.(II)若CF:CE=3:4,如答圖3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折疊性質(zhì)可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此時(shí)AD=AB=×1=.綜上所述,當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為或.(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△CBA相似.理由如下:
如圖所示,連接CD,與EF交于點(diǎn)Q.
∵CD是Rt△ABC的中線(xiàn)
∴CD=DB=AB,
∴∠DCB=∠B.
由折疊性質(zhì)可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ACB=∠ACB,
∴△CEF∽△CBA.18、(1)-2(2)-【答案解析】測(cè)試卷分析:(1)將原式第一項(xiàng)被開(kāi)方數(shù)8變?yōu)?×2,利用二次根式的性質(zhì)化簡(jiǎn)第二項(xiàng)利用特殊角的三角函數(shù)值化簡(jiǎn),第三項(xiàng)利用零指數(shù)公式化簡(jiǎn),最后一項(xiàng)利用負(fù)指數(shù)公式化簡(jiǎn),把所得的結(jié)果合并即可得到最后結(jié)果;(2)先把和a2﹣b2分解因式約分化簡(jiǎn),然后將a和b的值代入化簡(jiǎn)后的式子中計(jì)算,即可得到原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3=2﹣+1﹣3=﹣2;(2)?(a2﹣b2)=?(a+b)(a﹣b)=a+b,當(dāng)a=,b=﹣2時(shí),原式=+(﹣2)=﹣.19、(1)y=﹣5x2+110x+1200;(2)售價(jià)定為189元,利潤(rùn)最大1805元【答案解析】
利潤(rùn)等于(售價(jià)﹣成本)×銷(xiāo)售量,根據(jù)題意列出表達(dá)式,借助二次函數(shù)的性質(zhì)求最大值即可;【題目詳解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵拋物線(xiàn)開(kāi)口向下,∴當(dāng)x=11時(shí),y有最大值1805,答:售價(jià)定為189元,利潤(rùn)最大1805元;【答案點(diǎn)睛】本題考查實(shí)際應(yīng)用中利潤(rùn)的求法,二次函數(shù)的應(yīng)用;能夠根據(jù)題意列出合理的表達(dá)式是解題的關(guān)鍵.20、見(jiàn)解析【答案解析】
根據(jù)題意作∠CBA=∠CAP即可使得△ABC~△PAC.【題目詳解】如圖,作∠CBA=∠CAP,P點(diǎn)為所求.【答案點(diǎn)睛】此題主要考查相似三角形的尺規(guī)作圖,解題的關(guān)鍵是作一個(gè)角與已知角相等.21、(1)25(2)12【答案解析】整體分析:(1)用勾股定理求斜邊AB的長(zhǎng);(2)用三角形的面積等于底乘以高的一半求解.解:(1).∵在⊿中,,.∴,(2).∵⊿,∴即,∴20×15=25CD.∴.22、(1)證明見(jiàn)解析;(1)32【答案解析】測(cè)試卷分析:(1)求出∠OED=∠BCA=90°,根據(jù)切線(xiàn)的判定即可得出結(jié)論;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.測(cè)試卷解析:(1)證明:連接OE、EC.∵AC是⊙O的直徑,∴∠AEC=∠BEC=90°.∵D為BC的中點(diǎn),∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切線(xiàn);(1)由(1)知:∠BEC=90°.在Rt△BEC與Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE?BA.∵AE:EB=1:1,設(shè)AE=x,則BE=1x,BA=3x.∵BC=6,∴61=1x?3x,解得:x=6,即AE=6,∴AB=36,∴AC=AB2-BC2=點(diǎn)睛:本題考查了切線(xiàn)的判定和相似三角形的性質(zhì)和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此題的關(guān)鍵.23、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【答案解析】
(1)直接利用線(xiàn)段AB的“等長(zhǎng)點(diǎn)”的條件判斷;(2)分兩種情況討論,利用對(duì)稱(chēng)性和垂直的性質(zhì)即可求出m,n;(3)先判斷出直線(xiàn)y=kx+3與圓A,B相切時(shí),如圖2所示,利用相似三角形的性質(zhì)即可求出結(jié)論.【題目詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點(diǎn)C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線(xiàn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)數(shù)學(xué)二年級(jí)100以?xún)?nèi)連加連減口算題卡
- 2025年中考語(yǔ)文文言文總復(fù)習(xí)-學(xué)生版-專(zhuān)題02:文言文閱讀之虛詞意義和用法(練習(xí))
- 廣東省汕頭市2023-2024學(xué)年高三上學(xué)期普通高中畢業(yè)班期末調(diào)研測(cè)試英語(yǔ)試題
- 建筑設(shè)計(jì)銷(xiāo)售工作總結(jié)
- 家具店衛(wèi)生消毒標(biāo)準(zhǔn)
- 美容美發(fā)店前臺(tái)工作體會(huì)
- 《親子上網(wǎng)樂(lè)》課件
- 《尿路癥狀的鑒別》課件
- 體育行業(yè)賽事組織管理總結(jié)
- 醫(yī)療行業(yè)護(hù)理師培訓(xùn)總結(jié)
- 《業(yè)務(wù)員銷(xiāo)售技巧》課件
- 《汽車(chē)涂裝》2024-2025學(xué)年第一學(xué)期工學(xué)一體化課程教學(xué)進(jìn)度計(jì)劃表
- 水廠(chǎng)安全管理培訓(xùn)
- 江西省贛州市2023-2024學(xué)年高一上學(xué)期期末考試化學(xué)試題 附答案
- 消化道出血護(hù)理常規(guī)課件
- 2024年物流運(yùn)輸公司全年安全生產(chǎn)工作計(jì)劃例文(4篇)
- 期末卷(一)-2023-2024學(xué)年高一年級(jí)地理上學(xué)期高頻考題期末測(cè)試卷(江蘇專(zhuān)用)(原卷版)
- 山東師范大學(xué)《古代文學(xué)專(zhuān)題(一)》期末復(fù)習(xí)題
- 注塑操作員作業(yè)指導(dǎo)書(shū)
- 片石擋土墻砌筑施工方案及工藝方法
- 分析刑法中認(rèn)識(shí)因素和意志因素的關(guān)系
評(píng)論
0/150
提交評(píng)論