版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年甘肅省天水市秦安縣重點名校中考數(shù)學押題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.實數(shù)的倒數(shù)是()A. B. C. D.2.計算(1-)÷的結果是()A.x-1 B. C. D.3.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間4.如圖,矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.65.反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論的個數(shù)是()A.0 B.1 C.2 D.36.已知二次函數(shù)y=-x2-4x-5,左、右平移該拋物線,頂點恰好落在正比例函數(shù)y=-x的圖象上,則平移后的拋物線解析式為()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-27.如圖,△ABC是等邊三角形,點P是三角形內的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.38.如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點,則以DE為直徑的圓與BC的位置關系是()A.相切 B.相交 C.相離 D.無法確定9.|–|的倒數(shù)是()A.–2 B.– C. D.210.如圖是根據(jù)我市某天七個整點時的氣溫繪制成的統(tǒng)計圖,則這七個整點時氣溫的中位數(shù)和平均數(shù)分別是()A.30,28B.26,26C.31,30D.26,2211.將三粒均勻的分別標有,,,,,的正六面體骰子同時擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.12.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數(shù)為()A.40° B.50° C.60° D.70°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,小量角器的零度線在大量角器的零度線上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點P在小量角器上對應的度數(shù)為65°,那么在大量角器上對應的度數(shù)為_____度(只需寫出0°~90°的角度).14.如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為20,則k的值等于_____________.15.分解因式:4a2﹣1=_____.16.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現(xiàn)將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.17.把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖,已知EF=CD=80cm,則截面圓的半徑為cm.18.在平面直角坐標系中,點A的坐標為(a,3),點B的坐標是(4,b),若點A與點B關于原點O對稱,則ab=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點,C,D是該雙曲線另一支上兩點,且A、B、C、D四點按順時針順序排列.(1)如圖,若m=﹣,n=,點B的縱坐標為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡述作法;(2)若四邊形ABCD為矩形,A的坐標為(1,5),①求m,n的值;②點P(a,b)是雙曲線y=第一象限上一動點,當S△APC≥24時,則a的取值范圍是.20.(6分)如圖,已知:AD和BC相交于點O,∠A=∠C,AO=2,BO=4,OC=3,求OD的長.21.(6分)如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達點P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結果都保留根號).22.(8分)有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結果;(2)求一次打開鎖的概率.23.(8分)某中學七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數(shù),成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀,這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分的選手人數(shù)分別為a、b.隊別平均分中位數(shù)方差合格率優(yōu)秀率七年級6.7m3.4190%n八年級7.17.51.6980%10%(1)請依據(jù)圖表中的數(shù)據(jù),求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級的合格率、優(yōu)秀率均高于八年級;所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.24.(10分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當?shù)谝淮闻c外切時,求平移的時間.25.(10分)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.求證:∠1=∠2;連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.26.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AD=8,DE=5,求BC的長.27.(12分)有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數(shù)圖象,請結合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數(shù)解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【答案解析】因為=,所以的倒數(shù)是.故選D.2、B【答案解析】
先計算括號內分式的加法、將除式分子因式分解,再將除法轉化為乘法,約分即可得.【題目詳解】解:原式=(-)÷=?=,故選B.【答案點睛】本題主要考查分式的混合運算,解題的關鍵是掌握分式混合運算順序和運算法則.3、A【答案解析】
直接利用已知無理數(shù)得出的取值范圍,進而得出答案.【題目詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【答案點睛】此題主要考查了估算無理數(shù)大小,正確得出的取值范圍是解題關鍵.4、A【答案解析】
根據(jù)圖形可以求得BF的長,然后根據(jù)圖形即可求得S1-S2的值.【題目詳解】∵在矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【答案點睛】本題考查扇形面積的計算、矩形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.5、D【答案解析】
根據(jù)反比例函數(shù)的性質和比例系數(shù)的幾何意義逐項分析可得出解.【題目詳解】①由于A、B在同一反比例函數(shù)y=圖象上,由反比例系數(shù)的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發(fā)生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數(shù)的幾何意義.6、D【答案解析】
把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標互為相反數(shù),而平移時,頂點的縱坐標不變,即可求得函數(shù)解析式.【題目詳解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴頂點坐標是(﹣1,﹣1).由題知:把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標互為相反數(shù).∵左、右平移時,頂點的縱坐標不變,∴平移后的頂點坐標為(1,﹣1),∴函數(shù)解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故選D.【答案點睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律,上下平移時,點的橫坐標不變;左右平移時,點的縱坐標不變.同時考查了二次函數(shù)的性質,正比例函數(shù)y=﹣x的圖象上點的坐標特征.7、C【答案解析】
過點P作平行四邊形PGBD,EPHC,進而利用平行四邊形的性質及等邊三角形的性質即可.【題目詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【答案點睛】本題主要考查了平行四邊形的判定及性質以及等邊三角形的判定及性質,等邊三角形的性質:等邊三角形的三個內角都相等,且都等于60°.8、B【答案解析】
首先過點A作AM⊥BC,根據(jù)三角形面積求出AM的長,得出直線BC與DE的距離,進而得出直線與圓的位置關系.【題目詳解】解:過點A作AM⊥BC于點M,交DE于點N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分別是AC、AB的中點,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE為直徑的圓半徑為1.25,∴r=1.25>1.2,∴以DE為直徑的圓與BC的位置關系是:相交.故選B.【答案點睛】本題考查了直線和圓的位置關系,利用中位線定理得出BC到圓心的距離與半徑的大小關系是解題的關鍵.9、D【答案解析】
根據(jù)絕對值的性質,可化簡絕對值,根據(jù)倒數(shù)的意義,可得答案.【題目詳解】|?|=,的倒數(shù)是2;∴|?|的倒數(shù)是2,故選D.【答案點睛】本題考查了實數(shù)的性質,分子分母交換位置是求一個數(shù)倒數(shù)的關鍵.10、B.【答案解析】測試卷分析:由圖可知,把7個數(shù)據(jù)從小到大排列為22,22,23,1,28,30,31,中位數(shù)是第4位數(shù),第4位是1,所以中位數(shù)是1.平均數(shù)是(22×2+23+1+28+30+31)÷7=1,所以平均數(shù)是1.故選B.考點:中位數(shù);加權平均數(shù).11、C【答案解析】
三粒均勻的正六面體骰子同時擲出共出現(xiàn)216種情況,而邊長能構成直角三角形的數(shù)字為3、4、5,含這三個數(shù)字的情況有6種,故由概率公式計算即可.【題目詳解】解:因為將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【答案點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.12、B【答案解析】
解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【答案解析】
設大量角器的左端點是A,小量角器的圓心是B,連接AP,BP,則∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所對的圓心角是1°,因而P在大量角器上對應的度數(shù)為1°.故答案為1.14、﹣24【答案解析】分析:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點C的坐標為,這樣由點C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點C的坐標為,∵點C在反比例函數(shù)的圖象上,∴k=.故答案為:-24.點睛:本題的解題要點有兩點:(1)作出如圖所示的輔助線,設CF=4x,結合已知條件把OF和OA用含x的式子表達出來;(2)由四邊形AOCB是菱形,點D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.15、(2a+1)(2a﹣1)【答案解析】
有兩項,都能寫成完全平方數(shù)的形式,并且符號相反,可用平方差公式展開.【題目詳解】4a2﹣1=(2a+1)(2a﹣1).故答案為:(2a+1)(2a-1).【答案點睛】此題考查多項式因式分解,根據(jù)多項式的特點選擇適合的分解方法是解題的關鍵.16、【答案解析】
判斷出即是中心對稱,又是軸對稱圖形的個數(shù),然后結合概率計算公式,計算,即可.【題目詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【答案點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.17、1【答案解析】
過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設OF=r,則OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的長即可.【題目詳解】過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設OF=x,則OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案為1.18、1【答案解析】【分析】直接利用關于原點對稱點的性質得出a,b的值,進而得出答案.【題目詳解】∵點A的坐標為(a,3),點B的坐標是(4,b),點A與點B關于原點O對稱,∴a=﹣4,b=﹣3,則ab=1,故答案為1.【答案點睛】本題考查了關于原點對稱的點的坐標,熟知關于原點對稱的兩點的橫、縱坐標互為相反數(shù)是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①k=5;②見解析,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①;②0<a<1或a>5【答案解析】
(1)①求出直線的解析式,利用待定系數(shù)法即可解決問題;②如圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①求出A,B兩點坐標,利用待定系數(shù)法即可解決問題;②分兩種情形求出△PAC的面積=24時a的值,即可判斷.【題目詳解】(1)①∵,,∴直線的解析式為,∵點B在直線上,縱坐標為,∴,解得x=2∴,∴;②如下圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①∵點在上,∴k=5,∵四邊形ABCD是矩形,∴OA=OB=OC=OD,∴A,B關于直線y=x對稱,∴,則有:,解得;②如下圖,當點P在點A的右側時,作點C關于y軸的對稱點C′,連接AC,AC′,PC,PC′,PA.∵A,C關于原點對稱,,∴,∵,當時,∴,∴,∴a=5或(舍棄),當點P在點A的左側時,同法可得a=1,∴滿足條件的a的范圍為或.【答案點睛】本題屬于反比例函數(shù)與一次函數(shù)的綜合問題,熟練掌握待定系數(shù)法解函數(shù)解析式以及交點坐標的求法是解決本題的關鍵.20、OD=6.【答案解析】
(1)根據(jù)有兩個角相等的三角形相似,直接列出比例式,求出OD的長,即可解決問題.【題目詳解】在△AOB與△COD中,,∴△AOB~△COD,∴,∴,∴OD=6.【答案點睛】該題主要考查了相似三角形的判定及其性質的應用問題;解題的關鍵是準確找出圖形中的對應元素,正確列出比例式;對分析問題解決問題的能力提出了一定的要求.21、小船到B碼頭的距離是10海里,A、B兩個碼頭間的距離是(10+10)海里【答案解析】測試卷分析:過P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.測試卷解析:如圖:過P作PM⊥AB于M,則∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B碼頭的距離是海里,A、B兩個碼頭間的距離是()海里.考點:解直角三角形的應用-方向角問題.22、(1)詳見解析(2)【答案解析】
設兩把不同的鎖分別為A、B,能把兩鎖打開的鑰匙分別為、,其余兩把鑰匙分別為、,根據(jù)題意,可以畫出樹形圖,再根據(jù)概率公式求解即可.【題目詳解】(1)設兩把不同的鎖分別為A、B,能把兩鎖打開的鑰匙分別為、,其余兩把鑰匙分別為、,根據(jù)題意,可以畫出如下樹形圖:由上圖可知,上述試驗共有8種等可能結果;(2)由(1)可知,任意取出一把鑰匙去開任意一把鎖共有8種可能的結果,一次打開鎖的結果有2種,且所有結果的可能性相等.∴P(一次打開鎖)=.【答案點睛】如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.23、(1)a=5,b=1;(2)6;20%;(3)八年級平均分高于七年級,方差小于七年級.【答案解析】測試卷分析:(1)根據(jù)題中數(shù)據(jù)求出a與b的值即可;(2)根據(jù)(1)a與b的值,確定出m與n的值即可;(3)從方差,平均分角度考慮,給出兩條支持八年級隊成績好的理由即可.測試卷解析:(1)根據(jù)題意得:解得a=5,b=1;(2)七年級成績?yōu)?,6,6,6,6,6,7,8,9,10,中位數(shù)為6,即m=6;優(yōu)秀率為=20%,即n=20%;(3)八年級平均分高于七年級,方差小于七年級,成績比較穩(wěn)定,故八年級隊比七年級隊成績好.考點:1.條形統(tǒng)計圖;2.統(tǒng)計表;3.加權平均數(shù);4.中位數(shù);5.方差.24、(1)直線的解析式為:.(2)平移的時間為5秒.【答案解析】
(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據(jù)待定系數(shù)法求出函數(shù)的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據(jù)勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【題目詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.【答案點睛】本題綜合了待定系數(shù)法求函數(shù)解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經(jīng)常用到的.25、(1)證明見解析;(2)四邊形BCDE是菱形,理由見解析.【答案解析】
(1)證明△ADC≌△ABC后利用全等三角形的對應角相等證得結論.(2)首先判定四邊形BCDE是平行四邊形,然后利用對角線垂直的平行四邊形是菱形判定菱形即可.【題目詳解】解:(1)證明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四邊形BCDE是菱形,理由如下:如答圖,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四邊形DEBC是平行四邊形.∵AC⊥BD,∴四邊形DEBC是菱形.【答案點睛】考點:1.全等三角形的判定和性質;2.線段垂直平分線的性質;3.菱形的判定.26、(1)見解析(2)7.5【答案解析】
(1)只要證明∠A+∠B=90°,∠ADE+∠B=90°即可解決問題;(2)首先證明AC=2DE=10,在Rt△ADC中,求得DC=6,設BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解決問題.【題目詳解】(1)證明:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 05 A反沖現(xiàn)象 火箭 基礎版2025新課改-高中物理-選修第1冊(21講)
- 裝載機操作工培訓
- 套筒窯啟動操作維護手冊
- 河北省-2023年-社區(qū)網(wǎng)格員-上半年筆試真題卷
- 2021年10月貴州省國有資產(chǎn)監(jiān)督管理研究和服務中心公開招聘工作人員沖刺題(一)
- 化債分析系列1:化債周期開啟關注三條投資主線
- 《人體生理結構圖冊》課件
- 《華分紅宣導》課件
- 服飾業(yè)企業(yè)營銷創(chuàng)新策略研究考核試卷
- 儀器儀表制造業(yè)的協(xié)同創(chuàng)新考核試卷
- 2024年醫(yī)學高級職稱-內科護理(醫(yī)學高級)考試近5年真題集錦(頻考類試題)帶答案
- 2024年大學生就業(yè)創(chuàng)業(yè)知識競賽題庫及答案(共200題)
- 九上道德與法治期中復習提綱(知識梳理)(全冊)
- GB/T 15822.2-2024無損檢測磁粉檢測第2部分:檢測介質
- 2024版中國血脂管理指南
- 2022下半年四川省考公務員考試行測題及解析(三十二)
- 58級14班高考倒計時200天主題班會
- 快樂讀書吧《魯濱遜漂流記》整本書導讀課 教學設計-2023-2024學年語文六年級下冊統(tǒng)編版
- 2024年新人教版一年級上冊數(shù)學教學課件 5.7 多角度解決求總數(shù)的問題
- 互聯(lián)網(wǎng)網(wǎng)絡安全緊急應急演練方案+演練記錄(全版)
- 網(wǎng)站維護升級服務協(xié)議
評論
0/150
提交評論