版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
LearningfromObservations
(chapter18)Autumn2012Instructor:WangXiaolongHarbinInstituteofTechnology,ShenzhenGraduateSchoolIntelligentComputationResearchCenter(HITSGSICRC)
LearningfromObservations
(chOutlinesLearningagentsInductivelearningDecisiontreelearningMeasuringlearningperformanceOutlinesLearningagentsLearningLearningisessentialforunknownenvironments,i.e.,whendesignerlacksomniscienceLearningisusefulasasystemconstructionmethod,i.e.,exposetheagenttorealityratherthantryingtowriteitdownLearningmodifiestheagent'sdecisionmechanismstoimproveperformanceLearningLearningisessentialLearningagentsLearningagentsLearningelementDesignofalearningelementisaffectedbyWhichcomponentsoftheperformanceelementaretobelearnedWhatfeedbackisavailabletolearnthesecomponentsWhatrepresentationisusedforthecomponentsTypeoffeedback: Supervisedlearning:involveslearningafunctionfromexamplesofitsinputandoutputs.Unsupervisedlearning:involveslearningpatternsintheinputwhennospecificoutputvaluesaresupplied.Reinforcementlearning:learnfromrewards(reinforcement)LearningelementDesignofaleInductivelearningSimplestform:learnafunctionfromexamplesfisthetargetfunctionAnexampleisapair(x,f(x))Problem:findahypothesishsuchthath≈fgivenatraining
setofexamples(Thisisahighlysimplifiedmodelofreallearning:IgnorespriorknowledgeAssumesexamplesaregiven)InductivelearningSimplestforInductivelearningmethodConstruct/adjusth
toagreewithf
ontrainingset (hisconsistentifitagreeswithf
onallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:Ockham’srazor:preferthesimplesthypothesisconsistentwithdata
--InLatin,itmeans“Entitiesarenottobemultipliedbeyondnecessity”InductivelearningmethodConstLearningdecisiontreesProblem:decidewhethertowaitforatableatarestaurant,basedonthefollowingattributes:Alternate:isthereanalternativerestaurantnearby?Bar:isthereacomfortablebarareatowaitin?Fri/Sat:istodayFridayorSaturday?Hungry:arewehungry?Patrons:numberofpeopleintherestaurant(None,Some,Full)Price:pricerange($,$$,$$$)Raining:isitrainingoutside?Reservation:havewemadeareservation?Type:kindofrestaurant(French,Italian,Thai,Burger)WaitEstimate:estimatedwaitingtime(0-10,10-30,30-60,>60)LearningdecisiontreesProblemAttribute-basedrepresentationsExamplesdescribedbyattributevalues(Boolean,discrete,continuous)E.g.,situationswhereIwill/won'twaitforatable:Classificationofexamplesispositive(T)ornegative(F)Attribute-basedrepresentationDecisiontreesOnepossiblerepresentationforhypothesesE.g.,hereisthe“true”treefordecidingwhethertowait:DecisiontreesOnepossiblerepExpressivenessDecisiontreescanexpressanyfunctionoftheinputattributes.E.g.,forBooleanfunctions,truthtablerow→pathtoleaf:Trivially,thereisaconsistentdecisiontreeforanytrainingsetwithonepathtoleafforeachexample(unlessf
nondeterministicinx)butitprobablywon'tgeneralizetonewexamplesPrefertofindmorecompactdecisiontreesExpressivenessDecisiontreescHypothesisspacesHowmanydistinctdecisiontreeswithnBooleanattributes?=numberofBooleanfunctions=numberofdistincttruthtableswith2nrows=22nE.g.,with6Booleanattributes,thereare18,446,744,073,709,551,616treesMoreexpressivehypothesisspaceincreaseschancethattargetfunctioncanbeexpressedincreasesnumberofhypothesesconsistentwithtrainingset
maygetworsepredictionsHypothesisspacesHowmanydistDecisiontreelearningAim:findasmalltreeconsistentwiththetrainingexamplesIdea:(recursively)choose"mostsignificant"attributeasrootof(sub)treeDecisiontreelearningAim:finChoosinganattributeIdea:agoodattributesplitstheexamplesintosubsetsthatare(ideally)"allpositive"or"allnegative"Patrons?isabetterchoiceChoosinganattributeIdea:agUsinginformationtheoryInformationanswersquestionsThemorecluelessIamabouttheanswerinitially,themoreinformationiscontainedintheanswerInformationContent(Entropy):I(P(v1),…,P(vn))=Σi=1-P(vi)log2P(vi)Foratrainingsetcontainingppositiveexamplesandnnegativeexamples:UsinginformationtheoryInformInformationgainAchosenattributeAdividesthetrainingsetEintosubsetsE1,…,EvaccordingtotheirvaluesforA,whereA
hasvdistinctvalues.InformationGain(IG)orreductioninentropyfromtheattributetest:ChoosetheattributewiththelargestIGInformationgainAchosenattriInformationgainForthetrainingset,p=n=6,I(6/12,6/12)=1bitConsidertheattributesPatronsandType(andotherstoo):PatronshasthehighestIGofallattributesandsoischosenbytheDTLalgorithmastherootInformationgainForthetrainiExamplecontd.Decisiontreelearnedfromthe12examples:Substantiallysimplerthan“true”tree---amorecomplexhypothesisisn’tjustifiedbysmallamountofdataExamplecontd.DecisiontreelePerformancemeasurementHowdoweknowthath≈f
?Usetheoremsofcomputational/statisticallearningtheoryTryhonanewtestsetofexamples(usesamedistributionoverexamplespaceastrainingset)Learningcurve=%correctontestsetasafunctionoftrainingsetsizePerformancemeasurementHowdoSummaryLearningneededforunknownenvironments,lazydesignersLearningagent=performanceelement+learningelementForsupervisedlearning,theaimistofindasimplehypothesisapproximatelyconsistentwithtrainingexamplesDecisiontreelearningusinginformationgainLearningperformance=predictionaccuracymeasuredontestsetSummaryLearningneededforunkAssignmentsEx18.3AssignmentsEx18.3LearningfromObservations
(chapter18)Autumn2012Instructor:WangXiaolongHarbinInstituteofTechnology,ShenzhenGraduateSchoolIntelligentComputationResearchCenter(HITSGSICRC)
LearningfromObservations
(chOutlinesLearningagentsInductivelearningDecisiontreelearningMeasuringlearningperformanceOutlinesLearningagentsLearningLearningisessentialforunknownenvironments,i.e.,whendesignerlacksomniscienceLearningisusefulasasystemconstructionmethod,i.e.,exposetheagenttorealityratherthantryingtowriteitdownLearningmodifiestheagent'sdecisionmechanismstoimproveperformanceLearningLearningisessentialLearningagentsLearningagentsLearningelementDesignofalearningelementisaffectedbyWhichcomponentsoftheperformanceelementaretobelearnedWhatfeedbackisavailabletolearnthesecomponentsWhatrepresentationisusedforthecomponentsTypeoffeedback: Supervisedlearning:involveslearningafunctionfromexamplesofitsinputandoutputs.Unsupervisedlearning:involveslearningpatternsintheinputwhennospecificoutputvaluesaresupplied.Reinforcementlearning:learnfromrewards(reinforcement)LearningelementDesignofaleInductivelearningSimplestform:learnafunctionfromexamplesfisthetargetfunctionAnexampleisapair(x,f(x))Problem:findahypothesishsuchthath≈fgivenatraining
setofexamples(Thisisahighlysimplifiedmodelofreallearning:IgnorespriorknowledgeAssumesexamplesaregiven)InductivelearningSimplestforInductivelearningmethodConstruct/adjusth
toagreewithf
ontrainingset (hisconsistentifitagreeswithf
onallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:Ockham’srazor:preferthesimplesthypothesisconsistentwithdata
--InLatin,itmeans“Entitiesarenottobemultipliedbeyondnecessity”InductivelearningmethodConstLearningdecisiontreesProblem:decidewhethertowaitforatableatarestaurant,basedonthefollowingattributes:Alternate:isthereanalternativerestaurantnearby?Bar:isthereacomfortablebarareatowaitin?Fri/Sat:istodayFridayorSaturday?Hungry:arewehungry?Patrons:numberofpeopleintherestaurant(None,Some,Full)Price:pricerange($,$$,$$$)Raining:isitrainingoutside?Reservation:havewemadeareservation?Type:kindofrestaurant(French,Italian,Thai,Burger)WaitEstimate:estimatedwaitingtime(0-10,10-30,30-60,>60)LearningdecisiontreesProblemAttribute-basedrepresentationsExamplesdescribedbyattributevalues(Boolean,discrete,continuous)E.g.,situationswhereIwill/won'twaitforatable:Classificationofexamplesispositive(T)ornegative(F)Attribute-basedrepresentationDecisiontreesOnepossiblerepresentationforhypothesesE.g.,hereisthe“true”treefordecidingwhethertowait:DecisiontreesOnepossiblerepExpressivenessDecisiontreescanexpressanyfunctionoftheinputattributes.E.g.,forBooleanfunctions,truthtablerow→pathtoleaf:Trivially,thereisaconsistentdecisiontreeforanytrainingsetwithonepathtoleafforeachexample(unlessf
nondeterministicinx)butitprobablywon'tgeneralizetonewexamplesPrefertofindmorecompactdecisiontreesExpressivenessDecisiontreescHypothesisspacesHowmanydistinctdecisiontreeswithnBooleanattributes?=numberofBooleanfunctions=numberofdistincttruthtableswith2nrows=22nE.g.,with6Booleanattributes,thereare18,446,744,073,709,551,616treesMoreexpressivehypothesisspaceincreaseschancethattargetfunctioncanbeexpressedincreasesnumberofhypothesesconsistentwithtrainingset
maygetworsepredictionsHypothesisspacesHowmanydistDecisiontreelearningAim:findasmalltreeconsistentwiththetrainingexamplesIdea:(recursively)choose"mostsignificant"attributeasrootof(sub)treeDecisiontreelearningAim:finChoosinganattributeIdea:agoodattributesplitstheexamplesintosubsetsthatare(ideally)"allpositive"or"allnegative"Patrons?isabetterchoiceChoosinganattributeIdea:agUsinginformationtheoryInformationanswersquestionsThemorecluelessIamabouttheanswerinitially,themoreinformationiscontainedintheanswerInformationContent(Entropy):I(P(v1),…,P(vn))=Σi=1-P(vi)log2P(vi)Foratrainingsetcontainingppositiveexamplesandnnegativeexamples:UsinginformationtheoryInformInformationgainAchosenattributeAdividesthetrainingsetEintosubsetsE1,…,Evaccordingto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度餐飲行業(yè)食品安全監(jiān)督勞務(wù)合同
- 二零二五年度馬鈴薯種植基地與收購商合作框架合同
- 二零二五年度高科技企業(yè)股份股權(quán)轉(zhuǎn)讓協(xié)議
- 2024版廢金屬切割服務(wù)合同
- 二零二五年度高空作業(yè)勞務(wù)及高空作業(yè)人員安全教育培訓(xùn)合同
- 二零二五年度高端進(jìn)口酒水品牌獨(dú)占銷售合同
- 二零二五年度高考志愿填報(bào)專業(yè)選擇與職業(yè)指導(dǎo)合同
- 二零二五年度高考志愿填報(bào)輔導(dǎo)與高校獎學(xué)金獲取指導(dǎo)合同
- 二零二五年度魚塘養(yǎng)殖基地承包經(jīng)營權(quán)租賃合同
- 二零二五年度魚池承包合同期限與漁業(yè)生態(tài)環(huán)境保護(hù)協(xié)議
- 《中華人民共和國機(jī)動車駕駛?cè)丝颇恳豢荚囶}庫》
- 2024年VB程序設(shè)計(jì):從入門到精通
- 2024年故宮文化展覽計(jì)劃:課件創(chuàng)意與呈現(xiàn)
- 公共交通乘客投訴管理制度
- 不銹鋼伸縮縫安裝施工合同
- 水土保持監(jiān)理總結(jié)報(bào)告
- Android移動開發(fā)基礎(chǔ)案例教程(第2版)完整全套教學(xué)課件
- 醫(yī)保DRGDIP付費(fèi)基礎(chǔ)知識醫(yī)院內(nèi)培訓(xùn)課件
- 專題12 工藝流程綜合題- 三年(2022-2024)高考化學(xué)真題分類匯編(全國版)
- DB32T-經(jīng)成人中心靜脈通路裝置采血技術(shù)規(guī)范
- TDALN 033-2024 學(xué)生飲用奶安全規(guī)范入校管理標(biāo)準(zhǔn)
評論
0/150
提交評論