人工智能的課件CH18Learningfromobservations_第1頁
人工智能的課件CH18Learningfromobservations_第2頁
人工智能的課件CH18Learningfromobservations_第3頁
人工智能的課件CH18Learningfromobservations_第4頁
人工智能的課件CH18Learningfromobservations_第5頁
已閱讀5頁,還剩47頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

LearningfromObservations

(chapter18)Autumn2012Instructor:WangXiaolongHarbinInstituteofTechnology,ShenzhenGraduateSchoolIntelligentComputationResearchCenter(HITSGSICRC)

LearningfromObservations

(chOutlinesLearningagentsInductivelearningDecisiontreelearningMeasuringlearningperformanceOutlinesLearningagentsLearningLearningisessentialforunknownenvironments,i.e.,whendesignerlacksomniscienceLearningisusefulasasystemconstructionmethod,i.e.,exposetheagenttorealityratherthantryingtowriteitdownLearningmodifiestheagent'sdecisionmechanismstoimproveperformanceLearningLearningisessentialLearningagentsLearningagentsLearningelementDesignofalearningelementisaffectedbyWhichcomponentsoftheperformanceelementaretobelearnedWhatfeedbackisavailabletolearnthesecomponentsWhatrepresentationisusedforthecomponentsTypeoffeedback: Supervisedlearning:involveslearningafunctionfromexamplesofitsinputandoutputs.Unsupervisedlearning:involveslearningpatternsintheinputwhennospecificoutputvaluesaresupplied.Reinforcementlearning:learnfromrewards(reinforcement)LearningelementDesignofaleInductivelearningSimplestform:learnafunctionfromexamplesfisthetargetfunctionAnexampleisapair(x,f(x))Problem:findahypothesishsuchthath≈fgivenatraining

setofexamples(Thisisahighlysimplifiedmodelofreallearning:IgnorespriorknowledgeAssumesexamplesaregiven)InductivelearningSimplestforInductivelearningmethodConstruct/adjusth

toagreewithf

ontrainingset (hisconsistentifitagreeswithf

onallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth

toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth

toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth

toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth

toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth

toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:Ockham’srazor:preferthesimplesthypothesisconsistentwithdata

--InLatin,itmeans“Entitiesarenottobemultipliedbeyondnecessity”InductivelearningmethodConstLearningdecisiontreesProblem:decidewhethertowaitforatableatarestaurant,basedonthefollowingattributes:Alternate:isthereanalternativerestaurantnearby?Bar:isthereacomfortablebarareatowaitin?Fri/Sat:istodayFridayorSaturday?Hungry:arewehungry?Patrons:numberofpeopleintherestaurant(None,Some,Full)Price:pricerange($,$$,$$$)Raining:isitrainingoutside?Reservation:havewemadeareservation?Type:kindofrestaurant(French,Italian,Thai,Burger)WaitEstimate:estimatedwaitingtime(0-10,10-30,30-60,>60)LearningdecisiontreesProblemAttribute-basedrepresentationsExamplesdescribedbyattributevalues(Boolean,discrete,continuous)E.g.,situationswhereIwill/won'twaitforatable:Classificationofexamplesispositive(T)ornegative(F)Attribute-basedrepresentationDecisiontreesOnepossiblerepresentationforhypothesesE.g.,hereisthe“true”treefordecidingwhethertowait:DecisiontreesOnepossiblerepExpressivenessDecisiontreescanexpressanyfunctionoftheinputattributes.E.g.,forBooleanfunctions,truthtablerow→pathtoleaf:Trivially,thereisaconsistentdecisiontreeforanytrainingsetwithonepathtoleafforeachexample(unlessf

nondeterministicinx)butitprobablywon'tgeneralizetonewexamplesPrefertofindmorecompactdecisiontreesExpressivenessDecisiontreescHypothesisspacesHowmanydistinctdecisiontreeswithnBooleanattributes?=numberofBooleanfunctions=numberofdistincttruthtableswith2nrows=22nE.g.,with6Booleanattributes,thereare18,446,744,073,709,551,616treesMoreexpressivehypothesisspaceincreaseschancethattargetfunctioncanbeexpressedincreasesnumberofhypothesesconsistentwithtrainingset

maygetworsepredictionsHypothesisspacesHowmanydistDecisiontreelearningAim:findasmalltreeconsistentwiththetrainingexamplesIdea:(recursively)choose"mostsignificant"attributeasrootof(sub)treeDecisiontreelearningAim:finChoosinganattributeIdea:agoodattributesplitstheexamplesintosubsetsthatare(ideally)"allpositive"or"allnegative"Patrons?isabetterchoiceChoosinganattributeIdea:agUsinginformationtheoryInformationanswersquestionsThemorecluelessIamabouttheanswerinitially,themoreinformationiscontainedintheanswerInformationContent(Entropy):I(P(v1),…,P(vn))=Σi=1-P(vi)log2P(vi)Foratrainingsetcontainingppositiveexamplesandnnegativeexamples:UsinginformationtheoryInformInformationgainAchosenattributeAdividesthetrainingsetEintosubsetsE1,…,EvaccordingtotheirvaluesforA,whereA

hasvdistinctvalues.InformationGain(IG)orreductioninentropyfromtheattributetest:ChoosetheattributewiththelargestIGInformationgainAchosenattriInformationgainForthetrainingset,p=n=6,I(6/12,6/12)=1bitConsidertheattributesPatronsandType(andotherstoo):PatronshasthehighestIGofallattributesandsoischosenbytheDTLalgorithmastherootInformationgainForthetrainiExamplecontd.Decisiontreelearnedfromthe12examples:Substantiallysimplerthan“true”tree---amorecomplexhypothesisisn’tjustifiedbysmallamountofdataExamplecontd.DecisiontreelePerformancemeasurementHowdoweknowthath≈f

?Usetheoremsofcomputational/statisticallearningtheoryTryhonanewtestsetofexamples(usesamedistributionoverexamplespaceastrainingset)Learningcurve=%correctontestsetasafunctionoftrainingsetsizePerformancemeasurementHowdoSummaryLearningneededforunknownenvironments,lazydesignersLearningagent=performanceelement+learningelementForsupervisedlearning,theaimistofindasimplehypothesisapproximatelyconsistentwithtrainingexamplesDecisiontreelearningusinginformationgainLearningperformance=predictionaccuracymeasuredontestsetSummaryLearningneededforunkAssignmentsEx18.3AssignmentsEx18.3LearningfromObservations

(chapter18)Autumn2012Instructor:WangXiaolongHarbinInstituteofTechnology,ShenzhenGraduateSchoolIntelligentComputationResearchCenter(HITSGSICRC)

LearningfromObservations

(chOutlinesLearningagentsInductivelearningDecisiontreelearningMeasuringlearningperformanceOutlinesLearningagentsLearningLearningisessentialforunknownenvironments,i.e.,whendesignerlacksomniscienceLearningisusefulasasystemconstructionmethod,i.e.,exposetheagenttorealityratherthantryingtowriteitdownLearningmodifiestheagent'sdecisionmechanismstoimproveperformanceLearningLearningisessentialLearningagentsLearningagentsLearningelementDesignofalearningelementisaffectedbyWhichcomponentsoftheperformanceelementaretobelearnedWhatfeedbackisavailabletolearnthesecomponentsWhatrepresentationisusedforthecomponentsTypeoffeedback: Supervisedlearning:involveslearningafunctionfromexamplesofitsinputandoutputs.Unsupervisedlearning:involveslearningpatternsintheinputwhennospecificoutputvaluesaresupplied.Reinforcementlearning:learnfromrewards(reinforcement)LearningelementDesignofaleInductivelearningSimplestform:learnafunctionfromexamplesfisthetargetfunctionAnexampleisapair(x,f(x))Problem:findahypothesishsuchthath≈fgivenatraining

setofexamples(Thisisahighlysimplifiedmodelofreallearning:IgnorespriorknowledgeAssumesexamplesaregiven)InductivelearningSimplestforInductivelearningmethodConstruct/adjusth

toagreewithf

ontrainingset (hisconsistentifitagreeswithf

onallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth

toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth

toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth

toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth

toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth

toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:Ockham’srazor:preferthesimplesthypothesisconsistentwithdata

--InLatin,itmeans“Entitiesarenottobemultipliedbeyondnecessity”InductivelearningmethodConstLearningdecisiontreesProblem:decidewhethertowaitforatableatarestaurant,basedonthefollowingattributes:Alternate:isthereanalternativerestaurantnearby?Bar:isthereacomfortablebarareatowaitin?Fri/Sat:istodayFridayorSaturday?Hungry:arewehungry?Patrons:numberofpeopleintherestaurant(None,Some,Full)Price:pricerange($,$$,$$$)Raining:isitrainingoutside?Reservation:havewemadeareservation?Type:kindofrestaurant(French,Italian,Thai,Burger)WaitEstimate:estimatedwaitingtime(0-10,10-30,30-60,>60)LearningdecisiontreesProblemAttribute-basedrepresentationsExamplesdescribedbyattributevalues(Boolean,discrete,continuous)E.g.,situationswhereIwill/won'twaitforatable:Classificationofexamplesispositive(T)ornegative(F)Attribute-basedrepresentationDecisiontreesOnepossiblerepresentationforhypothesesE.g.,hereisthe“true”treefordecidingwhethertowait:DecisiontreesOnepossiblerepExpressivenessDecisiontreescanexpressanyfunctionoftheinputattributes.E.g.,forBooleanfunctions,truthtablerow→pathtoleaf:Trivially,thereisaconsistentdecisiontreeforanytrainingsetwithonepathtoleafforeachexample(unlessf

nondeterministicinx)butitprobablywon'tgeneralizetonewexamplesPrefertofindmorecompactdecisiontreesExpressivenessDecisiontreescHypothesisspacesHowmanydistinctdecisiontreeswithnBooleanattributes?=numberofBooleanfunctions=numberofdistincttruthtableswith2nrows=22nE.g.,with6Booleanattributes,thereare18,446,744,073,709,551,616treesMoreexpressivehypothesisspaceincreaseschancethattargetfunctioncanbeexpressedincreasesnumberofhypothesesconsistentwithtrainingset

maygetworsepredictionsHypothesisspacesHowmanydistDecisiontreelearningAim:findasmalltreeconsistentwiththetrainingexamplesIdea:(recursively)choose"mostsignificant"attributeasrootof(sub)treeDecisiontreelearningAim:finChoosinganattributeIdea:agoodattributesplitstheexamplesintosubsetsthatare(ideally)"allpositive"or"allnegative"Patrons?isabetterchoiceChoosinganattributeIdea:agUsinginformationtheoryInformationanswersquestionsThemorecluelessIamabouttheanswerinitially,themoreinformationiscontainedintheanswerInformationContent(Entropy):I(P(v1),…,P(vn))=Σi=1-P(vi)log2P(vi)Foratrainingsetcontainingppositiveexamplesandnnegativeexamples:UsinginformationtheoryInformInformationgainAchosenattributeAdividesthetrainingsetEintosubsetsE1,…,Evaccordingto

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論