![2023年上海市部分區(qū)重點名校中考數學四模試卷含答案解析_第1頁](http://file4.renrendoc.com/view/5de98388ea1aad3fd3d63a92f000a32c/5de98388ea1aad3fd3d63a92f000a32c1.gif)
![2023年上海市部分區(qū)重點名校中考數學四模試卷含答案解析_第2頁](http://file4.renrendoc.com/view/5de98388ea1aad3fd3d63a92f000a32c/5de98388ea1aad3fd3d63a92f000a32c2.gif)
![2023年上海市部分區(qū)重點名校中考數學四模試卷含答案解析_第3頁](http://file4.renrendoc.com/view/5de98388ea1aad3fd3d63a92f000a32c/5de98388ea1aad3fd3d63a92f000a32c3.gif)
![2023年上海市部分區(qū)重點名校中考數學四模試卷含答案解析_第4頁](http://file4.renrendoc.com/view/5de98388ea1aad3fd3d63a92f000a32c/5de98388ea1aad3fd3d63a92f000a32c4.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年上海市部分區(qū)重點名校中考數學四模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.小蘇和小林在如圖①所示的跑道上進行米折返跑.在整個過程中,跑步者距起跑線的距離(單位:)與跑步時間(單位:)的對應關系如圖②所示.下列敘述正確的是().A.兩人從起跑線同時出發(fā),同時到達終點B.小蘇跑全程的平均速度大于小林跑全程的平均速度C.小蘇前跑過的路程大于小林前跑過的路程D.小林在跑最后的過程中,與小蘇相遇2次2.下列說法錯誤的是()A.的相反數是2 B.3的倒數是C. D.,0,4這三個數中最小的數是03.如圖,網格中的每個小正方形的邊長是1,點M,N,O均為格點,點N在⊙O上,若過點M作⊙O的一條切線MK,切點為K,則MK=()A.3 B.2 C.5 D.4.如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數是()A.90° B.60° C.45° D.30°5.化簡÷的結果是()A. B. C. D.2(x+1)6.下列各式計算正確的是()A.a4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a12÷a3=a47.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形8.如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個邊長為4m的正方形,使不規(guī)則區(qū)域落在正方形內.現向正方形內隨機投擲小球(假設小球落在正方形內每一點都是等可能的),經過大量重復投擲試驗,發(fā)現小球落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數0.65附近,由此可估計不規(guī)則區(qū)域的面積約為()A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m29.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π10.如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為()A.5 B.6 C.7 D.8二、填空題(共7小題,每小題3分,滿分21分)11.如圖,一根5m長的繩子,一端拴在圍墻墻角的柱子上,另一端拴著一只小羊A(羊只能在草地上活動),那么小羊A在草地上的最大活動區(qū)域面積是_____平方米.12.已知一元二次方程x2-4x-3=0的兩根為m,n,則-mn+=.13.已知關于x的方程x2+mx+4=0有兩個相等的實數根,則實數m的值是______.14.如圖,AB是半圓O的直徑,E是半圓上一點,且OE⊥AB,點C為的中點,則∠A=__________°.15.不等式5x﹣3<3x+5的非負整數解是_____.16.函數y=中,自變量x的取值范圍為_____.17.如圖,點A、B、C在圓O上,弦AC與半徑OB互相平分,那么∠AOC度數為_____度.三、解答題(共7小題,滿分69分)18.(10分)計算:.19.(5分)如圖,正方形ABCD中,E,F分別為BC,CD上的點,且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長.20.(8分)先化簡,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.21.(10分)為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.分別求每臺型,型挖掘機一小時挖土多少立方米?若不同數量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調配方案,并指出哪種調配方案的施工費用最低,最低費用是多少元?22.(10分)先化簡,再求值:(),其中=23.(12分)(14分)如圖,在平面直角坐標系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點為A,與x軸的交點分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點E(t,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q.(1)求拋物線的解析式;(2)當0<t≤8時,求△APC面積的最大值;(3)當t>2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.24.(14分)如圖,二次函數y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.(1)求二次函數的表達式;(2)當﹣<x<1時,請求出y的取值范圍;(3)連接AD,線段OC上有一點E,點E關于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【答案解析】
A.由圖可看出小林先到終點,A錯誤;B.全程路程一樣,小林用時短,所以小林的平均速度大于小蘇的平均速度,B錯誤;C.第15秒時,小蘇距離起點較遠,兩人都在返回起點的過程中,據此可判斷小林跑的路程大于小蘇跑的路程,C錯誤;D.由圖知兩條線的交點是兩人相遇的點,所以是相遇了兩次,正確.故選D.2、D【答案解析】測試卷分析:﹣2的相反數是2,A正確;3的倒數是,B正確;(﹣3)﹣(﹣5)=﹣3+5=2,C正確;﹣11,0,4這三個數中最小的數是﹣11,D錯誤,故選D.考點:1.相反數;2.倒數;3.有理數大小比較;4.有理數的減法.3、B【答案解析】
以OM為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進而利用勾股定理求解.【題目詳解】如圖所示:MK=.故選:B.【答案點睛】考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.4、B【答案解析】
首先連接AB,由題意易證得△AOB是等邊三角形,根據等邊三角形的性質,可求得∠AOB的度數.【題目詳解】連接AB,根據題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【答案點睛】本題考查了等邊三角形的判定與性質,解題的關鍵是熟練的掌握等邊三角形的判定與性質.5、A【答案解析】
原式利用除法法則變形,約分即可得到結果.【題目詳解】原式=?(x﹣1)=.故選A.【答案點睛】本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關鍵.6、C【答案解析】
根據同底數冪的乘法,可判斷A、B,根據冪的乘方,可判斷C,根據同底數冪的除法,可判斷D.【題目詳解】A.a4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a12÷a3=a9,故D錯誤.故選C.【答案點睛】本題考查了同底數冪的除法,同底數冪的除法底數不變指數相減是解題的關鍵.7、C【答案解析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.8、D【答案解析】
首先確定小石子落在不規(guī)則區(qū)域的概率,然后利用概率公式求得其面積即可.【題目詳解】∵經過大量重復投擲試驗,發(fā)現小石子落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數0.65附近,∴小石子落在不規(guī)則區(qū)域的概率為0.65,∵正方形的邊長為4m,∴面積為16m2設不規(guī)則部分的面積為sm2則=0.65解得:s=10.4故答案為:D.【答案點睛】利用頻率估計概率.9、B【答案解析】
先依據勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【題目詳解】在△ABC中,依據勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【答案點睛】本題主要考查的是相切兩圓的性質、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.10、C【答案解析】
作輔助線,構建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據點D的坐標表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標,根據三角形面積公式可得結論.【題目詳解】解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,設D(x,),∵四邊形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴點E的縱坐標為﹣4,當y=﹣4時,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE?BM=××4=7;故選C.【答案點睛】考查正方形的性質、全等三角形的判定和性質、反比例函數的性質等知識,解題的關鍵是靈活運用所學知識解決問題,學會構建方程解決問題.二、填空題(共7小題,每小題3分,滿分21分)11、【答案解析】測試卷分析:根據題意可知小羊的最大活動區(qū)域為:半徑為5,圓心角度數為90°的扇形和半徑為1,圓心角為60°的扇形,則.點睛:本題主要考查的就是扇形的面積計算公式,屬于簡單題型.本題要特別注意的就是在拐角的位置時所構成的扇形的圓心角度數和半徑,能夠畫出圖形是解決這個問題的關鍵.在求扇形的面積時,我們一定要將圓心角代入進行計算,如果題目中出現的是圓周角,則我們需要求出圓心角的度數,然后再進行計算.12、1【答案解析】測試卷分析:由m與n為已知方程的解,利用根與系數的關系求出m+n=4,mn=﹣3,將所求式子利用完全平方公式變形后,即﹣mn+=﹣3mn=16+9=1.故答案為1.考點:根與系數的關系.13、±4【答案解析】分析:由方程有兩個相等的實數根,得到根的判別式等于0,列出關于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個相等的實數根,∴解得:故答案為點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.14、22.5【答案解析】
連接半徑OC,先根據點C為的中點,得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質得:∠A=∠ACO=×45°,可得結論.【題目詳解】連接OC,
∵OE⊥AB,
∴∠EOB=90°,
∵點C為的中點,
∴∠BOC=45°,
∵OA=OC,
∴∠A=∠ACO=×45°=22.5°,
故答案為:22.5°.【答案點睛】本題考查了圓周角定理與等腰三角形的性質.解題的關鍵是注意掌握數形結合思想的應用.15、0,1,2,1【答案解析】5x﹣1<1x+5,移項得,5x﹣1x<5+1,合并同類項得,2x<8,系數化為1得,x<4所以不等式的非負整數解為0,1,2,1;故答案為0,1,2,1.【答案點睛】根據不等式的基本性質正確解不等式,求出解集是解答本題的關鍵.16、x≠1.【答案解析】
該函數是分式,分式有意義的條件是分母不等于0,故分母x-1≠0,解得x的范圍.【題目詳解】根據題意得:x?1≠0,解得:x≠1.故答案為x≠1.【答案點睛】本題考查了函數自變量的取值范圍,解題的關鍵是熟練的掌握分式的意義.17、1.【答案解析】
首先根據垂徑定理得到OA=AB,結合等邊三角形的性質即可求出∠AOC的度數.【題目詳解】解:∵弦AC與半徑OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等邊三角形,∴∠AOB=60°,∴∠AOC=1°,故答案為1.【答案點睛】本題主要考查了垂徑定理的知識,解題的關鍵是證明△OAB是等邊三角形,此題難度不大.三、解答題(共7小題,滿分69分)18、【答案解析】【分析】括號內先進行通分,進行分式的加減法運算,然后再與括號外的分式進行分式乘除法運算即可.【題目詳解】原式===.【答案點睛】本題考查了分式的混合運算,熟練掌握有關分式的運算法則是解題的關鍵.19、(1)見解析;(2)正方形的邊長為.【答案解析】
(1)由正方形的性質得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結論;(2)證出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG?AE,設EG=x,則AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出結果.【題目詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足為G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE與△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四邊形ABCD為正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG?AE,設EG=x,則AE=AG+EG=2+x,∴()2=x?(2+x),解得:x1=1,x2=﹣3(不合題意舍去),∴AE=3,∴AB===.【答案點睛】本題考查了正方形的性質、全等三角形的判定與性質、相似三角形的判定與性質、勾股定理等知識,熟練掌握正方形的性質,證明三角形全等與相似是解題的關鍵.20、2x2﹣7xy,1【答案解析】
根據完全平方公式及多項式的乘法法則展開,然后合并同類項進行化簡,然后把x、y的值代入求值即可.【題目詳解】原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,當x=5,y=時,原式=50﹣7=1.【答案點睛】完全平方公式和多項式的乘法法則是本題的考點,能夠正確化簡多項式是解題的關鍵.21、(1)每臺型挖掘機一小時挖土30立方米,每臺型挖據機一小時挖土15立方米;(2)共有三種調配方案.方案一:型挖據機7臺,型挖掘機5臺;方案二:型挖掘機8臺,型挖掘機4臺;方案三:型挖掘機9臺,型挖掘機3臺.當A型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.【答案解析】分析:(1)根據題意列出方程組即可;(2)利用總費用不超過12960元求出方案數量,再利用一次函數增減性求出最低費用.詳解:(1)設每臺型,型挖掘機一小時分別挖土立方米和立方米,根據題意,得解得所以,每臺型挖掘機一小時挖土30立方米,每臺型挖據機一小時挖土15立方米.(2)設型挖掘機有臺,總費用為元,則型挖據機有臺.根據題意,得,因為,解得,又因為,解得,所以.所以,共有三種調配方案.方案一:當時,,即型挖據機7臺,型挖掘機5臺;方案二:當時,,即型挖掘機8臺,型挖掘機4臺;方案三:當時,,即型挖掘機9臺,型挖掘機3臺.,由一次函數的性質可知,隨的減小而減小,當時,,此時型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.點睛:本題考查了二元一次方程組和一次函數增減性,解答時先根據題意確定自變量取值范圍,再應用一次函數性質解答問題.22、【答案解析】分析:首先將括號里面的分式進行通分,然后將分式的分子和分母進行因式分解,然后將除法改成乘法進行約分化簡,最后將a的值代入化簡后的式子得出答案.詳解:原式=將原式=點睛:本題主要考查的是分式的化簡求值,屬于簡單題型.解決這個問題的關鍵就是就是將括號里面的分式進行化成同分母.23、(1)y=14x2-2x+3【答案解析】測試卷分析:(1)首先利用根與系數的關系得出:x1+x2=8測試卷解析:解:(1)由題意知x1、x2是方程mx2﹣8mx+4m+2=0的兩根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)則4m﹣16m+4m+2=0,解得:m=,∴該拋物線解析式為:y=;.(2)可求得A(0,3)設直線AC的解析式為:y=kx+b,∵∴∴直線AC的解析式為:y=﹣x+3,要構成△APC,顯然t≠6,分兩種情況討論:當0<t<6時,設直線l與AC交點為F,則:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)臨時用工合同范本
- 2025乳化瀝青灑布施工合同
- 藥材抵押借款合同模板
- 《大學物理(上冊)》課件-第1章
- 2025-2030全球車輛燃油油位計行業(yè)調研及趨勢分析報告
- 2025-2030全球電積銅行業(yè)調研及趨勢分析報告
- 2025年全球及中國直接空氣捕獲和儲存(DACS)行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球多層土壤傳感器行業(yè)調研及趨勢分析報告
- 2025年全球及中國阻燃塑料薄膜和片材行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球醫(yī)用手指康復訓練儀行業(yè)調研及趨勢分析報告
- 2025年度院感管理工作計劃(后附表格版)
- 勵志課件-如何做好本職工作
- 化肥銷售工作計劃
- 2024浙江華數廣電網絡股份限公司招聘精英18人易考易錯模擬試題(共500題)試卷后附參考答案
- 2024年山東省濟南市中考英語試題卷(含答案解析)
- 2024年社區(qū)警務規(guī)范考試題庫
- 2025中考英語作文預測:19個熱點話題及范文
- 第10講 牛頓運動定律的綜合應用(一)(講義)(解析版)-2025年高考物理一輪復習講練測(新教材新高考)
- 靜脈治療護理技術操作標準(2023版)解讀 2
- 2024年全國各地中考試題分類匯編(一):現代文閱讀含答案
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
評論
0/150
提交評論