版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列命題是真命題的是()A.如實數(shù)a,b滿足a2=b2,則a=bB.若實數(shù)a,b滿足a<0,b<0,則ab<0C.“購買1張彩票就中獎”是不可能事件D.三角形的三個內角中最多有一個鈍角2.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.13.如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經過點(﹣1,2),且與x軸交點的橫坐標分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結論:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正確的結論有()A.1個 B.2個 C.3個 D.4個4.如圖的幾何體是由一個正方體切去一個小正方體形成的,它的主視圖是()A. B. C. D.5.△ABC在正方形網格中的位置如圖所示,則cosB的值為()A. B. C. D.26.如圖,在邊長為3的等邊三角形ABC中,過點C垂直于BC的直線交∠ABC的平分線于點P,則點P到邊AB所在直線的距離為()A.33 B.32 C.7.如圖,在△ABC中,過點B作PB⊥BC于B,交AC于P,過點C作CQ⊥AB,交AB延長線于Q,則△ABC的高是()A.線段PB B.線段BC C.線段CQ D.線段AQ8.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結果保留小數(shù)點后兩位)(參考數(shù)據:3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里9.若關于x的一元一次不等式組無解,則a的取值范圍是()A.a≥3 B.a>3 C.a≤3 D.a<310.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.邊長為6的正六邊形外接圓半徑是_____.12.如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規(guī)律,第n個圖中正方形和等邊三角形的個數(shù)之和為______個.13.如圖所示是一組有規(guī)律的圖案,第l個圖案由4個基礎圖形組成,第2個圖案由7個基礎圖形組成,……,第n(n是正整數(shù))個圖案中的基礎圖形個數(shù)為_______(用含n的式子表示).14.如圖,在平面直角坐標系xOy中,點A,點B的坐標分別為(0,2),(-1,0),將線段AB沿x軸的正方向平移,若點B的對應點的坐標為B'(2,0),則點A的對應點A'的坐標為___.15.如圖,⊙O的半徑為1cm,正六邊形ABCDEF內接于⊙O,則圖中陰影部分面積為_____cm1.(結果保留π)16.如果某數(shù)的一個平方根是﹣5,那么這個數(shù)是_____.三、解答題(共8題,共72分)17.(8分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.18.(8分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.19.(8分)如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點.求反比例函數(shù)的表達式在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標求△PAB的面積.20.(8分)如圖,在平面直角坐標系中,函數(shù)的圖象與直線交于點A(3,m).求k、m的值;已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù)的圖象于點N.①當n=1時,判斷線段PM與PN的數(shù)量關系,并說明理由;②若PN≥PM,結合函數(shù)的圖象,直接寫出n的取值范圍.21.(8分)爸爸和小芳駕車去郊外登山,欣賞美麗的達子香(興安杜鵑),到了山下,爸爸讓小芳先出發(fā)6min,然后他再追趕,待爸爸出發(fā)24min時,媽媽來電話,有急事,要求立即回去.于是爸爸和小芳馬上按原路下山返回(中間接電話所用時間不計),二人返回山下的時間相差4min,假設小芳和爸爸各自上、下山的速度是均勻的,登山過程中小芳和爸爸之間的距離s(單位:m)關于小芳出發(fā)時間t(單位:min)的函數(shù)圖象如圖,請結合圖象信息解答下列問題:(1)小芳和爸爸上山時的速度各是多少?(2)求出爸爸下山時CD段的函數(shù)解析式;(3)因山勢特點所致,二人相距超過120m就互相看不見,求二人互相看不見的時間有多少分鐘?22.(10分)某漁業(yè)養(yǎng)殖場,對每天打撈上來的魚,一部分由工人運到集貿市場按10元/斤銷售,剩下的全部按3元/斤的購銷合同直接包銷給外面的某公司:養(yǎng)殖場共有30名工人,每名工人只能參與打撈與到集貿市場銷售中的一項工作,且每人每天可以打撈魚100斤或銷售魚50斤,設安排x名員工負責打撈,剩下的負責到市場銷售.(1)若養(yǎng)殖場一天的總銷售收入為y元,求y與x的函數(shù)關系式;(2)若合同要求每天銷售給外面某公司的魚至少200斤,在遵守合同的前提下,問如何分配工人,才能使一天的銷售收入最大?并求出最大值.23.(12分)計算:﹣14﹣2×(﹣3)2+÷(﹣)如圖,小林將矩形紙片ABCD沿折痕EF翻折,使點C、D分別落在點M、N的位置,發(fā)現(xiàn)∠EFM=2∠BFM,求∠EFC的度數(shù).24.如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經過點B,與直線l的另一個交點為C(4,n).(1)求n的值和拋物線的解析式;(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
A.兩個數(shù)的平方相等,這兩個數(shù)不一定相等,有正負之分即可判斷B.同號相乘為正,異號相乘為負,即可判斷C.“購買1張彩票就中獎”是隨機事件即可判斷D.根據三角形內角和為180度,三個角中不可能有兩個以上鈍角即可判斷【詳解】如實數(shù)a,b滿足a2=b2,則a=±b,A是假命題;數(shù)a,b滿足a<0,b<0,則ab>0,B是假命題;若實“購買1張彩票就中獎”是隨機事件,C是假命題;三角形的三個內角中最多有一個鈍角,D是真命題;故選:D【點睛】本題考查了命題與定理,根據實際判斷是解題的關鍵2、C【解析】
∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點:中點四邊形;平行四邊形的性質;菱形的判定;矩形的判定與性質;正方形的判定.3、C【解析】
首先根據拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點中,﹣2<x1<﹣1、0<x2<1說明拋物線的對稱軸在﹣1~0之間,即x=﹣>﹣1,可根據這些條件以及函數(shù)圖象上一些特殊點的坐標來進行判斷【詳解】由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸x=﹣>﹣1,且c>0;①由圖可得:當x=﹣2時,y<0,即4a﹣2b+c<0,故①正確;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;③拋物線對稱軸位于y軸的左側,則a、b同號,又c>0,故abc>0,所以③不正確;④由于拋物線的對稱軸大于﹣1,所以拋物線的頂點縱坐標應該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;因此正確的結論是①②④.故選:C.【點睛】本題主要考查對二次函數(shù)圖象與系數(shù)的關系,拋物線與x軸的交點,二次函數(shù)圖象上點的坐標特征等知識點的理解和掌握,能根據圖象確定與系數(shù)有關的式子的正負是解此題的關鍵.4、D【解析】試題分析:根據三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個正方形.5、A【解析】
解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.6、D【解析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點:1.角平分線的性質;2.等邊三角形的性質;3.含30度角的直角三角形;4.勾股定理.7、C【解析】
根據三角形高線的定義即可解題.【詳解】解:當AB為△ABC的底時,過點C向AB所在直線作垂線段即為高,故CQ是△ABC的高,故選C.【點睛】本題考查了三角形高線的定義,屬于簡單題,熟悉高線的作法是解題關鍵.8、B【解析】
根據題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據三角形內角和和等腰三角形的性質得出BA=BE,AD=DE,設BD=x,Rt△ABD中,根據勾股定理得AD=DE=
3x,AB=BE=CE=2x,由AC=AD+DE+EC=2
3x+2x=30,解之即可得出答案.【詳解】根據題意畫出圖如圖所示:作BD⊥AC,取BE=CE,
∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
又∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
又∵∠CAB=30°
∴BA=BE,AD=DE,
設BD=x,
在Rt△ABD中,
∴AD=DE=
3x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2
3x+2x=30,
∴x=153+1
=
15【點睛】本題考查了三角形內角和定理與等腰直角三角形的性質,解題的關鍵是熟練的掌握三角形內角和定理與等腰直角三角形的性質.9、A【解析】
先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點睛】考查的是解一元一次不等式組,熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關鍵.10、A【解析】
根據應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、6【解析】
根據正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,∴邊長為6的正六邊形外接圓半徑是6,故答案為:6.【點睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形是解題的關鍵.12、9n+1.【解析】
∵第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成,∴正方形和等邊三角形的和=6+6=12=9+1;∵第2個圖由11個正方形和10個等邊三角形組成,∴正方形和等邊三角形的和=11+10=21=9×2+1;∵第1個圖由16個正方形和14個等邊三角形組成,∴正方形和等邊三角形的和=16+14=10=9×1+1,…,∴第n個圖中正方形和等邊三角形的個數(shù)之和=9n+1.故答案為9n+1.13、3n+1【解析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎圖形有4+3(n-1)=3n+1個考點:規(guī)律型14、(3,2)【解析】
根據平移的性質即可得到結論.【詳解】∵將線段AB沿x軸的正方向平移,若點B的對應點B′的坐標為(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案為:(3,2)【點睛】本題考查了坐標與圖形變化-平移.解決本題的關鍵是正確理解題目,按題目的敘述一定要把各點的大致位置確定,正確地作出圖形.15、【解析】試題分析:根據圖形分析可得求圖中陰影部分面積實為求扇形部分面積,將原圖陰影部分面積轉化為扇形面積求解即可.試題解析:如圖所示:連接BO,CO,∵正六邊形ABCDEF內接于⊙O,∴AB=BC=CO=1,∠ABC=110°,△OBC是等邊三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴圖中陰影部分面積為:S扇形OBC=.考點:正多邊形和圓.16、25【解析】
利用平方根定義即可求出這個數(shù).【詳解】設這個數(shù)是x(x≥0),所以x=(-5)2=25.【點睛】本題解題的關鍵是掌握平方根的定義.三、解答題(共8題,共72分)17、(1)真;(2);(3)或或.【解析】
(1)先根據直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據三角形外角的性質說明即可;(2)先證明△PAC∽△PMB,然后根據相似三角形的性質求解即可;(3)分三種情況求解:P為線段AB上的“好點”,P為線段AB延長線上的“好點”,P為線段BA延長線上的“好點”.【詳解】(1)真.理由如下:如圖,當∠ABC=90°時,M為PC中點,BM=PM,則∠MPB=∠MBP>∠ACP,所以在線段AB上不存在“好點”;(2)∵P為BA延長線上一個“好點”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M為PC中點,∴MP=2;∴;∴.(3)第一種情況,P為線段AB上的“好點”,則∠ACP=∠MBA,找AP中點D,連結MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB邊上,舍去;)∴AP=2第二種情況(1),P為線段AB延長線上的“好點”,則∠ACP=∠MBA,找AP中點D,此時,D在線段AB上,如圖,連結MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM∴DM2=DP·DB即4=DP·(5DA)=DP·(5DP);解得DP=1(不在AB延長線上,舍去),DP=4∴AP=8;第二種情況(2),P為線段AB延長線上的“好點”,找AP中點D,此時,D在AB延長線上,如圖,連結MD;此時,∠MBA>∠MDB>∠DMP=∠ACP,則這種情況不存在,舍去;第三種情況,P為線段BA延長線上的“好點”,則∠ACP=∠MBA,∴△PAC∽△PMB;∴∴BM垂直平分PC則BC=BP=;∴∴綜上所述,或或;【點睛】本題考查了信息遷移,三角形外角的性質,直角三角形斜邊的中線等于斜邊的一半,相似三角形的判定與性質及分類討論的數(shù)學思想,理解“好點”的定義并能進行分類討論是解答本題的關鍵.18、(1)12;(2)1【解析】
(1)根據四只鞋子中右腳鞋有2只,即可得到隨手拿出一只恰好是右腳鞋的概率;(2)依據樹狀圖即可得到共有12種等可能的結果,其中兩只恰好為一雙的情況有4種,進而得出恰好為一雙的概率.【詳解】解:(1)∵四只鞋子中右腳鞋有2只,∴隨手拿出一只,恰好是右腳鞋的概率為24=1故答案為:12(2)畫樹狀圖如下:共有12種等可能的結果,其中兩只恰好為一雙的情況有4種,∴拿出兩只,恰好為一雙的概率為412=1【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)反比例函數(shù)的表達式y(tǒng)=,(2)點P坐標(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數(shù)中可得到A點坐標,再把A點坐標代入反比例解析式中即可得到反比例函數(shù)的表達式;(2)作點D關于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標,再由待定系數(shù)法求出直線AD的解析式,即可得到點P的坐標;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數(shù)y=﹣x+4,得a=﹣1+4,
解得a=3,
∴A(1,3),
點A(1,3)代入反比例函數(shù)y=,
得k=3,
∴反比例函數(shù)的表達式y(tǒng)=,
(2)把B(3,b)代入y=得,b=1∴點B坐標(3,1);作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,
∴D(3,﹣1),設直線AD的解析式為y=mx+n,
把A,D兩點代入得,,
解得m=﹣2,n=1,
∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,
∴點P坐標(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點晴:本題是一道一次函數(shù)與反比例函數(shù)的綜合題,并與幾何圖形結合在一起來求有關于最值方面的問題.此類問題的重點是在于通過待定系數(shù)法求出函數(shù)圖象的解析式,再通過函數(shù)解析式反過來求坐標,為接下來求面積做好鋪墊.20、(1)k的值為3,m的值為1;(2)0<n≤1或n≥3.【解析】分析:(1)將A點代入y=x-2中即可求出m的值,然后將A的坐標代入反比例函數(shù)中即可求出k的值.(2)①當n=1時,分別求出M、N兩點的坐標即可求出PM與PN的關系;②由題意可知:P的坐標為(n,n),由于PN≥PM,從而可知PN≥2,根據圖象可求出n的范圍.詳解:(1)將A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),將A(3,1)代入y=,∴k=3×1=3,m的值為1.(2)①當n=1時,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),點P在直線y=x上,過點P作平行于x軸的直線,交直線y=x-2于點M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3點睛:本題考查反比例函數(shù)與一次函數(shù)的綜合問題,解題的關鍵是求出反比例函數(shù)與一次函數(shù)的解析式,本題屬于基礎題型.21、(1)小芳上山的速度為20m/min,爸爸上山的速度為28m/min;(2)爸爸下山時CD段的函數(shù)解析式為y=12x﹣288(24≤x≤40);(3)二人互相看不見的時間有7.1分鐘.【解析】分析:(1)根據速度=路程÷時間可求出小芳上山的速度;根據速度=路程÷時間+小芳的速度可求出爸爸上山的速度;
(2)根據爸爸及小芳的速度結合點C的橫坐標(6+24=30),可得出點C的坐標,由點D的橫坐標比點E少4可得出點D的坐標,再根據點C、D的坐標利用待定系數(shù)法可求出CD段的函數(shù)解析式;
(3)根據點D、E的坐標利用待定系數(shù)法可求出DE段的函數(shù)解析式,分別求出CD、DE段縱坐標大于120時x的取值范圍,結合兩個時間段即可求出結論.詳解:(1)小芳上山的速度為120÷6=20(m/min),爸爸上山的速度為120÷(21﹣6)+20=28(m/min).答:小芳上山的速度為20m/min,爸爸上山的速度為28m/min.(2)∵(28﹣20)×(24+6﹣21)=72(m),∴點C的坐標為(30,72);∵二人返回山下的時間相差4min,44﹣4=40(min),∴點D的坐標為(40,192).設爸爸下山時CD段的函數(shù)解析式為y=kx+b,將C(30,72)、D(40,192)代入y=kx+b,,解得:.答:爸爸下山時CD段的函數(shù)解析式為y=12x﹣288(24≤x≤40).(3)設DE段的函數(shù)解析式為y=mx+n,將D(40,192)、E(44,0)代入y=mx+n,,解得:,∴DE段的函數(shù)解析式為y=﹣48x+2112(40≤x≤44).當y=12x﹣288>120時,34<x≤40;當y=﹣48x+2112>120時,40≤x<41.1.41.1﹣34=7.1(min).答:二人互相看不見的時間有7.1分鐘.點睛:本題考查了一次函數(shù)的應用、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,解題的關鍵是:(1)根據數(shù)量關系,列式計算;(2)根據點C、D的坐標,利用待定系數(shù)法求出CD段的函數(shù)解析式;(3)利用一次函數(shù)圖象上點的坐標特征分別求出CD、DE段縱坐標大于120時x的取值范圍.22、(1)y=﹣50x+10500;(2)安排12人打撈,18人銷售可使銷售利潤最大,最大銷售利潤為9900元.【解析】
(1)根據題意可以得到y(tǒng)關于x的函數(shù)解析式,本題得以解決;(2)根據題意可以得到x的不等式組,從而可以求得x的取值范圍,從而可以得到y(tǒng)的最大值,本題得以解決.【詳解】(1)由題意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y與x的函數(shù)關系式為y=﹣50x+10500;(2)由題意可得,,得x,∵x是整數(shù),y=﹣50x+10500,∴當x=12時,y取得最大值,此時,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打撈,18人銷售可使銷售利潤最大,最大銷售利潤為9900元.【點睛】本題考查一次函數(shù)的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用函數(shù)和不等式的性質解答.23、(1)﹣10;(2)∠EFC=72°.【解析】
(1)原式利用乘方的意義,立方根定義,乘除法則及家減法法則計算即可;(2)根據折疊的性質得到一對角相等,再由已知角的關系求出結果即可.【詳解】(1)原式=﹣1﹣18+9=﹣10;(2)由折疊得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴設∠EFM=∠EFC=x,則有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+x=180°,解得:x=72°,則∠EFC=72°.【點睛】本題考查了實數(shù)的性質及平行線的性質,解題的關鍵是熟練
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國水相過濾膜行業(yè)投資前景及策略咨詢研究報告
- 機器視覺與控制融合-深度研究
- 工業(yè)設備安裝安全規(guī)范-深度研究
- 企業(yè)創(chuàng)新文化的構建與傳播策略-深度研究
- 2025至2030年中國釉質粘結劑數(shù)據監(jiān)測研究報告
- 智慧街區(qū)與創(chuàng)意產業(yè)協(xié)同-深度研究
- 2025至2030年中國手袋配料數(shù)據監(jiān)測研究報告
- 2025至2030年中國圓筒流延復合制袋機組數(shù)據監(jiān)測研究報告
- 2025至2030年中國壓力鋼管數(shù)據監(jiān)測研究報告
- 2025年中國驅動器殼市場調查研究報告
- 2024公路瀝青路面結構內部狀況三維探地雷達快速檢測規(guī)程
- 浙江省臺州市2021-2022學年高一上學期期末質量評估政治試題 含解析
- 2024年高考真題-地理(河北卷) 含答案
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 2024年浙江省中考科學試卷
- 初三科目綜合模擬卷
- 2024風力發(fā)電葉片維保作業(yè)技術規(guī)范
- 《思想道德與法治》課程教學大綱
- 2024光儲充一體化系統(tǒng)解決方案
- 2024年全國高考新課標卷物理真題(含答案)
- 處理后事授權委托書
評論
0/150
提交評論